[lex40] From electric potential to electric field and back

(a) From the electric potential, $\Phi(\mathbf{x}) = ax^3 + byz^2 - cxyz$, where a, b, c are constants in units of V/m^3 , determine the electric field in the form $\mathbf{E}(\mathbf{x}) = E_x(x, y, z) \hat{\mathbf{i}} + E_y(x, y, z) \hat{\mathbf{j}} + E_z(x, y, z) \hat{\mathbf{k}}$. (b) Show that electric field, $\mathbf{E}(\mathbf{x}) = -2axz \hat{\mathbf{i}} + 3by^2 \hat{\mathbf{j}} - ax^2 \hat{\mathbf{k}}$ is irrotational, i.e. satisfies $\nabla \times \mathbf{E} = 0$, and thus qualifies as an electrostatic field.

(c) Infer from this electrostatic field the electric potential $\Phi(x, y, z)$ via integration along path C_1 and along path C_2 as shown. The irrotational nature of the electric field guarantees that the integral is path-independent.

Solution: