[lex40] From electric potential to electric field and back

(a) From the electric potential, $\Phi(\mathbf{x})=a x^{3}+b y z^{2}-c x y z$, where a, b, c are constants in units of $\mathrm{V} / \mathrm{m}^{3}$, determine the electric field in the form $\mathbf{E}(\mathbf{x})=E_{x}(x, y, z) \hat{\mathbf{i}}+E_{y}(x, y, z) \hat{\mathbf{j}}+E_{z}(x, y, z) \hat{\mathbf{k}}$.
(b) Show that electric field, $\mathbf{E}(\mathbf{x})=-2 a x z \hat{\mathbf{i}}+3 b y^{2} \hat{\mathbf{j}}-a x^{2} \hat{\mathbf{k}}$ is irrotational, i.e. satisfies $\nabla \times \mathbf{E}=0$, and thus qualifies as an electrostatic field.
(c) Infer from this electrostatic field the electric potential $\Phi(x, y, z)$ via integration along path C_{1} and along path C_{2} as shown. The irrotational nature of the electric field guarantees that the integral is path-independent.

Solution:

