[lex4] Electric field of charged ring II

Calculate the electric field of a uniformly charged ring of radius R at points along a radial line (in the plane of the ring). The line charge density (charge per unit length) is λ. Show that the result can be expressed in terms of complete elliptic integrals as follows:

$$
E(r)=\frac{k Q}{\pi r\left(r^{2}-R^{2}\right)}\left[(r-R) \mathrm{K}\left(\frac{4 r R}{(r+R)^{2}}\right)+(r+R) \mathrm{E}\left(\frac{4 r R}{(r+R)^{2}}\right)\right], \quad k \doteq \frac{1}{4 \pi \epsilon_{0}}
$$

Plot the expression on a scale that shows all its features. Infer from the general result asymptotic expressions for field points (i) near $r=0$, (ii) near $r=R$, and (iii) at $r \gg R$.

Solution:

