[lex36] Magnetic dipole field

Given the dipole term in the multipole expansion of the vector potential $\mathbf{A}(\mathbf{x})$ as derived in [lln12], derive the following expression for the magnetic dipole field $\mathbf{B}(\mathbf{x})$:

$$
\mathbf{A}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^{2}} \Rightarrow \mathbf{B}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \frac{[3 \hat{\mathbf{r}}(\mathbf{m} \cdot \hat{\mathbf{r}})-\mathbf{m}]}{r^{3}}
$$

where \mathbf{m} is the magnetic dipole moment and $\hat{\mathbf{r}}=\mathbf{x} / r$ the unit vector pointing from the dipole (assumed localized) to the field point.
(a) Work out the solution by hand.
(b) Work out the solution in a Mathematica notebook. A vector is List. Its magnitude is Norm. The cross product is Cross, The curl is Curl.
(c) What is the relative orientation of \mathbf{B} and \mathbf{m} (i) if $\hat{\mathbf{r}}$ and \mathbf{m} are parallel, (ii) if $\hat{\mathbf{r}}$ and \mathbf{m} are perpendicular, (iii) if $\hat{\mathbf{r}}$ and \mathbf{m} are antiparallel.

Solution:

