[lex30] Dielectric sphere polarized by uniform electric field

A uniformly dielectric solid sphere of radius R and dielectric constant κ is placed into a region of uniform applied electric field $\mathbf{E}_{\mathrm{ap}}=E_{0} \hat{\mathbf{k}}$. We use spherical coordinates r, θ with azimuthal symmetry. The polarization of the dielectric material produces bound charge at the surface, which modifies the electric field both outside and inside the sphere. Start from a special case of the model solution of the Laplace equation established in [lln6]:

$$
\Phi_{\mathrm{int}}(r, \theta)=a r \cos \theta+\frac{b \cos \theta}{r^{2}}, \quad \Phi_{\mathrm{ext}}(r, \theta)=c r \cos \theta+\frac{d \cos \theta}{r^{2}}
$$

(a) Establish the functions $\Phi_{\text {int }}(r, \theta) \Phi_{\text {ext }}(r, \theta)$ by determining the constants a, b, c, d by imposing all relevant boundary conditions.
(b) Check the limits $\kappa \rightarrow 1$ (non-polarizable material) and $\kappa \rightarrow \infty$ (conducting material). The latter case was worked out in [lex17].
(c) Determine the surface density of bound charge, $\sigma_{\mathrm{b}}(\theta)$, which, in the limit $\kappa \rightarrow \infty$ must approach the surface density of mobile charge on a conducting sphere calculated in [lex17].

Solution:

