[lex24] Series expansion of off-center Coulomb potential

A point charge q is positioned off center at $\mathbf{x}^{\prime}=\left(r^{\prime}, 0,0\right)$ in a system of spherical coordinates. The electric potential at point $\mathbf{x}=(r, \theta, \phi)$ is

$$
\begin{equation*}
\Phi(\mathbf{x})=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \tag{1}
\end{equation*}
$$

It will prove useful in a number of contexts, including that of Green's functions, to express (1) as an expansion in the coordinates r and θ, specifically in the form,

$$
\begin{equation*}
V(\mathbf{x})=V(r, \theta)=\frac{q}{4 \pi \epsilon_{0}} \sum_{l=0}^{\infty} R_{l}(r) P_{l}(\cos \theta) \tag{2}
\end{equation*}
$$

Use the generating function of Legendre polynomials [lln8] to find the functions $R_{l}(r)$ for $r \leq r^{\prime}$ and for $r \geq r^{\prime}$ in expression (2). The absence of the angle ϕ in this expansion is due to azimuthal symmetry of (1). The series is convergent everywhere except at the position of q.

Solution:

