[lex22] Conducting hemispherical shells at different electric potential

Consider a thin conducting spherical shell of radius R split into two hemispheres and electrically insulated from each other. The hemisphere at $z>0(z<0)$ is at electric potential $+\Phi_{0}\left(-\Phi_{0}\right)$. These are Dirichlet boundary conditions. From [lln7] we know that the electric potential in the interior and exterior regions can be expanded in the form,

$$
\begin{gather*}
\Phi_{\mathrm{int}}(r, \theta)=\sum_{l=0}^{\infty} a_{l}\left(\frac{r}{R}\right)^{l} P_{l}(\cos \theta) \quad: r \leq R \tag{1}\\
\Phi_{\mathrm{ext}}(r, \theta)=\sum_{l=0}^{\infty} a_{l}\left(\frac{R}{r}\right)^{l+1} P_{l}(\cos \theta) \quad: r \geq R \tag{2}
\end{gather*}
$$

where the $P_{l}(\cos \theta)$ are Legendre polynomials and r, θ are the radial and polar components of spherical coordinates. We also know from [lln7] how the expansion coefficients a_{l} can be derived from the given potential $\Phi(R, \theta)$:

$$
\begin{equation*}
\Rightarrow a_{l}=\frac{2 l+1}{2} \int_{0}^{\pi} d \theta \sin \theta P_{l}(\cos \theta) \Phi(R, \theta) \tag{3}
\end{equation*}
$$

(a) Show that the expansion coefficients a_{l} pertaining to this application are,

$$
a_{l}=\Phi_{0}\left[P_{l-1}(0)-P_{l+1}(0)\right] .
$$

(b) Design graphical representations for the functions (1) and (2) that show all salient features.
(c) Determine the surface charge density $\sigma(\theta)$ on each hemisphere as an expansion in terms of Legendre polynomials. Plot and interpret the function $\sigma(\theta)$ thus obtained.

Solution:

