[lex20] Square pipe made of conducting walls at different potential

Consider a pipe of infinite length with an $a \times a$ inside square cross section, made of four conducting walls kept at different electric potential. The walls at $x= \pm a / 2$ are grounded and the walls at $y= \pm a / 2$ are held at potential $\Phi_{0}>0$.
(a) Express the electric potential $\Phi(x, y)$ inside the pipe as a series of product functions $X(x) Y(y)$ that solve the Laplace equation and satisfy the Dirichlet boundary conditions. Explain why that series must have the form,

$$
\Phi(x, y)=\sum_{n=0}^{\infty} C_{n} \cos \left(k_{n} x\right) \cosh \left(k_{n} y\right), \quad k_{n}=(2 n+1) \frac{\pi}{a} \quad: \quad n=0,1,2, \ldots
$$

(b) Visualize the potential in a contour plot.
(c) Determine the surface charge distribution in each wall and plot its profile.

Solution:

