[lex196] Magnetic dipole near long straight current-carrying wire

An infinitely long thin wire is positioned on the z-axis and has a steady current $I>0$ flowing in the negative z-direction. A magnetic dipole with dipole moment,

$$
\mathbf{m}=m_{x} \hat{\mathbf{i}}+m_{y} \hat{\mathbf{j}}+m_{z} \hat{\mathbf{k}}, \quad m_{x}=m \sin \theta \cos \phi, \quad m_{y}=m \sin \theta \sin \phi, \quad m_{z}=m \cos \theta,
$$

is positioned at $x=0, y>0, z>0$. In the magnetic field \mathbf{B} of the current, the dipole has potential energy $U=-\mathbf{m} \cdot \mathbf{B}$, experiences a torque $\mathbf{N}=\mathbf{m} \times \mathbf{B}$, and a force $\mathbf{F}=-\nabla U$.
(a) For which orientation θ, ϕ of \mathbf{m} does U have its minimum value.
(b) Find the torque \mathbf{N} if the dipole moment \mathbf{m} is oriented in the positive z-direction.
(c) Find the force \mathbf{F} acting on the dipole if its moment is oriented (i) in positive z-direction, (ii) in positive y-direction, (iii) in positive x-direction, (iv) in negative x-direction.

Solution:

