[lex194] Lorentz invariance of Maxwell's equation

A demonstration of Maxwell's equations written in the standard form,

$$
\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}, \quad \nabla \cdot \mathbf{B}=0, \quad \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \times \mathbf{B}=\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \mathbf{J},
$$

requires knowledge of how $E_{i}, B_{i}, \rho, J_{i}, \partial / \partial x_{i}$ for $i=x, y, z$ Lorentz transform. This information is available in [lln25]. We assume that the relative motion between inertial frames is $\mathbf{v}=v \hat{\mathbf{i}}$. The Lorentz invariance is worked out step by step in [lln25] for the the first two Maxwell equations and for the component with $\partial B_{x} / \partial t$ of Faraday's law.
Demonstrate the invariance of Faraday's law for the other two components and the invariance of Ampère's law for all three components using analogous steps.

Solution:

