[lex192] Electric potential of charged ring I

Consider a ring of radius R centered at the origin of the $x y$-plane. The ring is uniformly charged with charge per unit length λ.
(a) Calculate the electric potential at a point on the z-axis. Start from the general expression $\phi(\mathbf{x})$ in $[\ln 5]$ for the electric potential of a continuous charge distribution. Then simplify that expression systematically into a function $\Phi(z, R, q)$, where q is the total charge on the ring, by taking advantage of symmetry and reduced dimensionality.
(b) Infer from the function $\Phi(z, R, q)$ the electric field $E_{z}(z, R, q)$, which is the main result of [lex2] in a more direct calculation.

Solution:

