[lex191] Vector potential generated by magnetized material

Consider a compact region V of magnetized material characterized by a magnetization $\mathbf{M}\left(\mathbf{x}^{\prime}\right)$. The vector potential potential at any field point is then determined by the integral expression [lln13],

$$
\mathbf{A}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \int_{V} d^{3} x^{\prime} \frac{\mathbf{M}\left(\mathbf{x}^{\prime}\right) \times\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{3}}
$$

Show that this expression can be transformed into

$$
\mathbf{A}(\mathbf{x})=\frac{\mu_{0}}{4 \pi}\left[\int_{V} d^{3} x^{\prime} \frac{\nabla^{\prime} \times \mathbf{M}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}+\oint_{S} \frac{\mathbf{M}\left(\mathbf{x}^{\prime}\right) \times d \mathbf{a}^{\prime}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\right]
$$

where S is the surface of that compact region.

Solution:

