[lex186] Mixed versus pure photonic states

Consider the two photonic number states $|0\rangle$ and $|1\rangle$. Both are stationary states. Their Husimi distributions are time-independent.
(a) Combine the two states $|0\rangle$ and $|1\rangle$ into a mixed state,

$$
\rho_{\mathrm{m}}=\frac{1}{2}[|0\rangle\langle 0|+|1\rangle\langle 1|] .
$$

Determine its (properly normalized) Husimi distribution, $W_{\mathrm{m}}(x, p)$ and establish a 3D plot similar to the one shown in [lln26].
(b) Combine the two states $|0\rangle$ and $|1\rangle$ into a pure quantum state,

$$
|\psi\rangle=\frac{1}{\sqrt{2}}[|0\rangle+|1\rangle], \quad \rho_{\mathrm{e}}=|\psi\rangle\langle\psi| .
$$

Determine its (properly normalized) Husimi distribution, $W_{\mathrm{e}}(x, p, t)$, which is time-dependent and plot it at different times to demonstrate the periodicity.
(c) Show that the the tme-average of the function $W_{\mathrm{e}}(x, p, t)$ yields the function $W_{\mathrm{m}}(x, p)$.

Solution:

