[lex184] Phase-space distribution in harmonic oscillator

The time evolution of the canonical coordinates of the classical harmonic oscillator can be written (for a particular choice of phase) in the form,

$$
x(t)=x_{0} \sin (\omega t), \quad p(t)=p_{0} \cos (\omega t), \quad \frac{1}{2} m \omega^{2} x_{0}^{2}=\frac{p_{0}^{2}}{2 m}=E
$$

The time averaged joint probability density for the scaled coordinates $\hat{x} \doteq x / x_{0}$ and $\hat{p} \doteq p / p_{0}$ is uniform on the unit circle:

$$
\begin{equation*}
\bar{P}(\hat{x}, \hat{p})=\frac{1}{2 \pi} \delta\left(\sqrt{\hat{x}^{2}+\hat{p}^{2}}-1\right) \tag{1}
\end{equation*}
$$

(a) Show that this probability density is indeed normalized.
(b) Show that integration of (1) over the variable \hat{p} yields the probability density $P_{x}(\hat{x})$ identified in [lam5] and calculated in [lex182].

Solution:

