[lex179] Differential recursion relation for Poisson and Pascal statistics

(a) Show that the Poisson and Pascal probability distributions,

$$
P_{n}(t)=\frac{(t / \tau)^{n}}{(1+t / \tau)^{n+1}}, \quad P_{n}(t)=\frac{(t / \tau)^{n}}{n!} e^{-t / \tau}
$$

satisfy the differential recursion relation,

$$
(n+1) P_{n+1}(t)=n P_{n}(t)-t P_{n}^{\prime}(t), \quad n=1,2, \ldots
$$

(b) Show that the above recursion relation is equivalent to the relation,

$$
P_{n}(t)=\frac{(-t)^{n}}{n!} \frac{d^{n}}{d t^{n}} P_{0}(t), \quad n=1,2, \ldots
$$

for any differentiable function $P_{n}(t)$.

Solution:

