## [lex177] Super-Poisson interpolation statistics I

(a) Construct the super-Poisson probability distibution,

$$
P_{n}(t)=\left(1+\frac{1}{m}\right)\left(1+\frac{2}{m}\right) \cdots\left(1+\frac{n-1}{m}\right) \frac{1}{n!}\left(\frac{t}{\tau}\right)^{n}\left(1+\frac{t}{m \tau}\right)^{-(m+n)}
$$

from the function,

$$
P_{0}(t)=\left(1+\frac{t}{m \tau}\right)^{-m}
$$

and the differential recursion relation,

$$
(n+1) P_{n+1}(t)=n P_{n}(t)-t P_{n}^{\prime}(t), \quad n=1,2, \ldots
$$

The integer-valued $m$ is the interpolation parameter which links the Pascal distribution ( $m=1$ ) with the Poisson distribution $(m=\infty)$. The function $P_{0}(t)$ is known to represent the wellestablished Pascal and Poisson distributions in the two limits $[\ln 24]$ and the recursion relation has been demonstrated in [lex179] to be valid for both.
(b) Recover the limiting cases,

$$
\lim _{m \rightarrow 1} P_{n}(t)=\frac{(t / \tau)^{n}}{(1+t / \tau)^{n+1}}, \quad \lim _{m \rightarrow \infty} P_{n}(t)=\frac{(t / \tau)^{n}}{n!} e^{-t / \tau}
$$

from the general expression stated above.

## Solution:

