## [lex174] Bloch equations I

Consider the Bloch equations,

$$
\begin{aligned}
\frac{d M_{x}}{d t} & =\gamma\left[M_{y} B_{z}-M_{z} B_{y}\right]-\frac{M_{x}}{T_{2}} \\
\frac{d M_{y}}{d t} & =\gamma\left[M_{z} B_{x}-M_{x} B_{z}\right]-\frac{M_{y}}{T_{2}} \\
\frac{d M_{z}}{d t} & =\gamma\left[M_{x} B_{y}-M_{y} B_{x}\right]+\frac{M_{\mathrm{eq}}-M_{z}}{T_{1}}
\end{aligned}
$$

for the relaxation of the vector $\mathbf{M}=\left(M_{x}, M_{y}, M_{z}\right)$, where $\gamma$ is the gyromagnetic ratio, $T_{2}$ the spinspin relaxation time, $T_{1}$ the spin-lattice relaxation time, and $\mathbf{B}=\left(B_{x}, B_{y}, B_{z}\right)$ a magnetic field with dominant $z$-component. The equilibrium magnetization is governed by the static susceptibility via the relation, $M_{\mathrm{eq}}=\chi(T) B_{z}$.
(a) Find the analytic solution of the Bloch equation for the case $B_{x}=B_{y}=0$ and initial conditions $M_{x}(0)=0, M_{y}(0)=M_{\perp}^{0}$, and $M_{z}(0)=M_{z}^{0}$.
(b) Plot $M_{x}(t)$ and $M_{y}(t)$ versus $0<t<3$ for $\gamma=1, B_{z}=20, T_{2}=0.5$, and $M_{\perp}=1$.
(c) Plot $M_{z}(t)$ versus $0<t<10$ for $\gamma=1, T_{1}=2$, and $M_{z}^{0}=0.9, M_{z}^{0}=-0.5$ (two curves).

The components $M_{x}$ and $M_{y}$ describe damped oscillations with initial amplitude $M_{\perp}^{0}$ and decay rate $T_{2}^{-1}$. The component $M_{z}$ decays uniformly from the initial value $M_{z}^{0}$ toward the equilibrium value $M_{\mathrm{eq}}$ at the rate $T_{1}^{-1}$. The magnitude of the vector $\mathbf{M}$ is conserved only for $T_{1} \rightarrow \infty, T_{2} \rightarrow \infty$.

Establishing initial conditions that differ from the equilibrium conditions, i.e. from long-time asymptotic solutions of the Bloch equations, are described in [lex175].

## Solution:

