[lex174] Bloch equations I

Consider the Bloch equations,

$$\begin{aligned} \frac{dM_x}{dt} &= \gamma [M_y B_z - M_z B_y] - \frac{M_x}{T_2}, \\ \frac{dM_y}{dt} &= \gamma [M_z B_x - M_x B_z] - \frac{M_y}{T_2}, \\ \frac{dM_z}{dt} &= \gamma [M_x B_y - M_y B_x] + \frac{M_{\rm eq} - M_z}{T_1}. \end{aligned}$$

for the relaxation of the vector $\mathbf{M} = (M_x, M_y, M_z)$, where γ is the gyromagnetic ratio, T_2 the spinspin relaxation time, T_1 the spin-lattice relaxation time, and $\mathbf{B} = (B_x, B_y, B_z)$ a magnetic field with dominant z-component. The equilibrium magnetization is governed by the static susceptibility via the relation, $M_{eq} = \chi(T)B_z$.

(a) Find the analytic solution of the Bloch equation for the case $B_x = B_y = 0$ and initial conditions $M_x(0) = 0, M_y(0) = M_{\perp}^0$, and $M_z(0) = M_z^0$.

(b) Plot $M_x(t)$ and $M_y(t)$ versus 0 < t < 3 for $\gamma = 1$, $B_z = 20$, $T_2 = 0.5$, and $M_{\perp} = 1$.

(c) Plot $M_z(t)$ versus 0 < t < 10 for $\gamma = 1, T_1 = 2$, and $M_z^0 = 0.9, M_z^0 = -0.5$ (two curves).

The components M_x and M_y describe damped oscillations with initial amplitude M_{\perp}^0 and decay rate T_2^{-1} . The component M_z decays uniformly from the initial value M_z^0 toward the equilibrium value $M_{\rm eq}$ at the rate T_1^{-1} . The magnitude of the vector **M** is conserved only for $T_1 \to \infty$, $T_2 \to \infty$.

Establishing initial conditions that differ from the equilibrium conditions, i.e. from long-time asymptotic solutions of the Bloch equations, are described in [lex175].

Solution: