[lex172] Phase velocity and group velocity

Electromagnetic waves constrained by wave guides are, in general, dispersive, thus characterized by distinct phase and group velocities:

$$v_{\rm ph} \doteq \frac{\omega}{k}, \quad v_{\rm gr} \doteq \frac{d\omega}{dk}.$$

Find the general structure of the dispersion $\omega(k)$ that produces the following relations between phase velocity $v_{\rm ph}$, group velocity $v_{\rm gr}$, and speed of light in vacuum c: (a) $v_{\rm ph}v_{\rm gr} = c^2$, (b) $v_{\rm ph}^2 v_{\rm gr} = c^3$, (c) $v_{\rm ph}v_{\rm gr}^2 = c^3$.

Solution: