[lex17] Conducting sphere in uniform electric field

A grounded conducting sphere of radius R is placed into a region where a uniform electric field $\mathbf{E}_{\mathrm{ap}}=E_{0} \hat{\mathbf{k}}$ is present. Electrostatic equilibrium is restored by a nonuniform surface charge density σ, which modifies the electric field surrounding the sphere.
(a) Show that an electric potential of the form,

$$
\begin{equation*}
\Phi(r, \theta)=\frac{a}{r}+b+\frac{c \cos \theta}{r^{2}}+d r \cos \theta \tag{1}
\end{equation*}
$$

(in spherical coordinates) is a solution of the Laplace equation.
(b) Determine the coefficients a, b, c, d in (1) such that physically meaningful boundary conditions at $r=R$ and at $r=\infty$ are satisfied.
(c) Determine the surface charge density $\sigma(R, \theta)$.
(d) One hemisphere of the conducting surface will be positively charged and the other negatively by an equal amount. Find the induced charge Q_{hs} on each hemisphere.
(e) The applied field $\mathbf{E}_{\text {ap }}$ induces an electric dipole on the sphere, which is reflected in the third term of (1). Find the induced electric dipole moment \mathbf{p} for this situation.
(f) If the grounded sphere is replaced a conducting sphere that carries a charge Q_{0} on its surface, what are the coefficients a, b, c, d in (1) for that case?

Solution:

