[lex164] Two events, two views, one common ground

Inertial frame \mathcal{F}^{\prime} is moving with velocity $v=+0.5 c$ relative to inertial frame \mathcal{F}. Consider the events P at $x=1.8 \mathrm{~m}, c t=1.4 \mathrm{~m}$ and event Q at $x^{\prime}=1.0 \mathrm{~m}, c t^{\prime}=2.0 \mathrm{~m}$.
(a) Draw a Minkowski diagram to scale on graph paper and determine the coordinates of both event in the other frame by graphical construction. You may use a graphics software instead.
(b) From the data thus given or read off the diagram, calculate the spacetime distances $\Delta s \doteq$ $\sqrt{(c \Delta t)^{2}-(\Delta x)^{2}}$ and $\Delta s^{\prime} \doteq \sqrt{\left(c \Delta t^{\prime}\right)^{2}-\left(\Delta x^{\prime}\right)^{2}}$ between the two points in the frames S and S^{\prime}, respectively.

Solution:

