[lex163] Exchange of light signals II

When a spaceship (frame \mathcal{F}^{\prime}) passes Earth (frame \mathcal{F}) at relative velocity $v=0.6 c$ (event 1), clocks are synchronized: $t_{1}=t_{1}^{\prime}=0$. At time $t_{2}=10 \mathrm{~min}$ a light pulse is emitted from Earth toward the spaceship (event 2). At time t_{3}^{\prime} the light pulse is detected on the spaceship (event 3).
(a) Draw a Minkowski diagram with axes (x, t) and $\left(x^{\prime}, t^{\prime}\right)$ to scale on graph paper (with time measured in minutes and distance in light-minutes) or use a graphing software. Then locate the events $1,2,3$ in the diagram.
(b) Determine the coordinates of all three event in both frames by graphical construction. Compare the results with those found in [lex90].

Solution:

