[lex161] Time on the fly

Spaceships A and B, each having proper length $\ell_{0}=100 \mathrm{~m}$, pass each other moving in opposite direction with relative velocity of $v_{r}=7 \times 10^{7} \mathrm{~m} / \mathrm{s}$. Each spaceship has synchronized clocks at both ends, front and rear.
The clocks at the front end of spaceship A and at the rear end of spaceship B happen to strike noon simultaneously, $t_{A f}=t_{B r}=12: 00: 00.000000000$, when they are opposite one another. What are the readings $t_{A r}$ of the clock at the rear end of spaceship A and $t_{B f}$ of the clock at the front end of spaceship B when they are opposite each other? Express your answers to nanosecond precision

Solution:

