[lex16] Point charge near perpendicular plane conducting surfaces

Consider two plane conducting surfaces at right angle. The conducting material is at $y<0$ and at $z<0$. Now we place a point charge $q>0$ at $x=0, y=y_{0}>0, z=z_{0}>0$ outside the conductor and investigate the electrostatic equilibrium. For this purpose we place one positive and two negative image point charges such that the electric potential potential $\Phi(\mathbf{x})$ of the four point charges combined vanishes at both surfaces. We use symmetry as our guiding principle.
(a) Calculate the electric field $\mathbf{E}=-\nabla \Phi(\mathbf{x})$ and verify that the two tangential components vanish at each surface.
(b) Infer from the normal component of the electric field at each surface the surface charge densities,

$$
\sigma_{x z}(x, z)=\epsilon_{0} E_{y}(x, 0, z) \quad: \quad z>0 ; \quad \sigma_{x y}(x, y)=\epsilon_{0} E_{z}(x, y, 0) \quad: y>0
$$

Graphically represent the profile of the induced charge densities in the form of contour plots.
(c) Determine via integration the total charge on each surface:

$$
q_{x z}=\int_{-\infty}^{+\infty} d x \int_{0}^{\infty} d z \sigma_{x z}(x, z), \quad q_{x y}=\int_{-\infty}^{+\infty} d x \int_{0}^{\infty} d y \sigma_{x y}(x, y)
$$

Show that the induced charge on the two surfaces is

$$
Q_{\mathrm{ind}}=q_{x z}+q_{x y}=-\frac{2 q}{\pi}\left[\arctan \frac{y_{0}}{z_{0}}+\arctan \frac{z_{0}}{y_{0}}\right]=-q .
$$

Solution:

