[lex159] Jaynes-Cummings model I

The Hamiltonian of the Jaynes-Cummings model of a two-level atom interacting with a single quantized mode of radiation field $[\ln 27]$ in scaled form can be rendered as follows:

$$
\mathcal{H}=S_{z}+a^{\dagger} a+\Lambda\left(S_{+} a+S_{-} a^{\dagger}\right)
$$

The Hilbert space is spanned by the orthonormal basis vectors, $|m, n\rangle ; m=0,1, n=0,1,2, \ldots$ with the following actions of the relevant operators:

$$
\begin{aligned}
& S_{z}|m, n\rangle=\left(\frac{1}{2}-m\right)|m, n\rangle, \quad S_{+}|m, n\rangle=\sqrt{m(1-m+1)}|m-1, n\rangle, \\
& S_{-}|m, n\rangle=\sqrt{(1-m)(m+1)}|m+1, n\rangle, \\
& a^{\dagger}|m, n\rangle=\sqrt{n+1}|m, n+1\rangle, \quad a|m, n\rangle=\sqrt{n}|m, n-1\rangle
\end{aligned}
$$

(a) Determine the matrix elements for the four terms of \mathcal{H},

$$
\langle m n| S_{z}\left|n^{\prime} m^{\prime}\right\rangle, \quad\langle m n| a^{\dagger} a\left|n^{\prime} m^{\prime}\right\rangle, \quad\langle m n| S_{+} a\left|n^{\prime} m^{\prime}\right\rangle, \quad\langle m n| S_{-} a^{\dagger}\left|n^{\prime} m^{\prime}\right\rangle
$$

(b) Show by inspection that the eigenvectors with even parity are

$$
\left|\psi_{1,0}\right\rangle=|1,0\rangle, \quad\left|\psi_{1, n}\right\rangle=\frac{1}{\sqrt{2}}[|1, n\rangle+|0, n-1\rangle] \quad: n=1,2, \ldots
$$

and the eigenvectors with odd parity are

$$
\left|\psi_{0, n}\right\rangle=\frac{1}{\sqrt{2}}[|1, n+1\rangle-|0, n\rangle] \quad: n=0,1,2, \ldots
$$

with respective eigenvalues,

$$
E_{1, n}=\hbar \omega\left(n-\frac{1}{2}\right)+\hbar g_{0} \sqrt{n}, \quad E_{0, n}=\hbar \omega\left(n+\frac{1}{2}\right)-\hbar g_{0} \sqrt{n+1}
$$

(c) Identify the ground state and the first pair of eigenstates whose energy levels are subject to interaction-mediated splitting.

Solution:

