[lex158] Einstein coefficient for hydrogen $2 s \rightarrow 3 p$ transition

Identify the (real) electronic wave functions for the $2 s$ and $3 p$ states with $m=0$ of the hydrogen atom and express them as functions of the spherical variables r, θ with the Bohr radius a_{0} as the only parameter. Transitions with $\Delta m=0$ are not prohibited if the light is polarized in z-direction. (a) Check the normalization of both wave functions, named $\psi_{1}(r, \theta)$ and $\psi_{2}(r, \theta)$ for the two resonant levels under consideration here.
(b) Calculate the electric-dipole matrix element,

$$
\mu_{12} \doteq-e \int d^{3} r \psi_{1}^{*}(\mathbf{r}) z \psi_{2}(\mathbf{r})
$$

for the $2 s \rightarrow 3 p$ transition as a function of a_{0} and the elementary charge e.
(c) Calculate the numerical value (in SI units) of the Einstein coefficient, using the expression,

$$
B_{12}=\frac{\pi \mu_{12}^{2}}{3 \epsilon_{0} \hbar^{2}}
$$

determined in [lln27].

Solution:

