[lex155] Coherent state of quantum harmonic oscillator II

The pure one-parameter quantum state,

$$
|\alpha\rangle=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle,
$$

where α is the complex-valued parameter, is known as a coherent state of the quantum harmonic oscillator used for modeling a stream of photons [lln26]. Consider the displacement operator,

$$
D=e^{\imath(p \mathcal{Q}-x \mathcal{P}) / \hbar}, \quad \mathcal{Q}=\sqrt{\frac{\hbar}{2 m \omega}}\left(a^{\dagger}+a\right), \quad \mathcal{P}=\imath \sqrt{\frac{m \hbar \omega}{2}}\left(a^{\dagger}-a\right)
$$

where x, p is a point in the phase plane and \mathcal{Q}, \mathcal{P} are position and momentum operators expressed in terms of ladder operators [lam5].
(a) Show that the translation operator expressed by ladder operators becomes,

$$
D(\alpha)=e^{\alpha a^{\dagger}-\alpha^{*} a}, \quad \alpha=\sqrt{\frac{\omega m}{2 \hbar}} x+\imath \sqrt{\frac{1}{2 \hbar \omega m}} p=\Re[\alpha]+\imath \Im[\alpha] .
$$

(b) Show that the displacement operator generates (non-stationary) coherent states $|\alpha\rangle$ from the (stationary) ground state $|0\rangle$ as follows: $D(\alpha)|0\rangle=|\alpha\rangle$.

Hint: Use the operator relation, $e^{A+B+[A, B] / 2}=e^{A} e^{B}$, which is valid if the operator $[A, B]$ commutes with operators A and B.

Solution:

