[lex152] Erlang distributions II

Consider the (continuous) Erlang distribution for arbitrary integer-valued index k,

$$
f^{(k)}(t) \doteq \frac{(k / \tau)^{k} t^{k-1}}{(k-1)!} e^{-k t / \tau}
$$

Prepare a Mathematica notebook or equivalent to carry out the following list of tasks:
(a) Show that function $f^{(k)}(t)$ is normalized.
(b) Show that its mean is equal to τ, and its variance equal to τ^{2} / k.
(c) Infer from $f^{(k)}(t)$ the discrete probability distribution,

$$
P_{n}^{(k)}(t)=\left[\sum_{m=0}^{k-1} \frac{(k t / \tau)^{k n+m}}{(k n+m)!}\right] e^{-k t / \tau}=\frac{\Gamma(k n+k, k t / \tau)}{\Gamma(k n+k)}-\frac{\Gamma(k n, k t / \tau)}{\Gamma(k n)}
$$

via integration and the use of a recursion relation as follows:

$$
P_{0}^{(k)}(t)=\int_{t}^{\infty} d t^{\prime} f^{(k)}\left(t^{\prime}\right), \quad P_{n}^{(k)}(t)=\int_{0}^{t} d t^{\prime} f^{(k)}\left(t^{\prime}\right) P_{n-1}^{(k)}\left(t-t^{\prime}\right)
$$

(d) Show that this (discrete) probability distribution is normalized as well.
(e) Plot $P_{0}^{(k)}(t)$ as a function of t / τ for increasing values of k and infer the function $P_{0}^{(\infty)}(t)$.

Solution:

