[lex148] Magnetic dipole interaction IV

This is an extension of [lex130], where we have expressed the interaction potential of two magnetic dipoles \mathbf{m} and \mathbf{m}_1 as shown in the form,

$$U = -\mathbf{m}_1 \cdot \mathbf{B}(\mathbf{x}) = \frac{\mu_0}{4\pi} \frac{mm_1}{r^3} \bar{U}(\theta, \psi),$$

as a function of the angles $0 \le \theta \le \pi$ and $-\pi \le \psi \le \pi$.

(a) Establish a contour plot of $\overline{U}(\theta, \psi)$.

(b) Determine the energetically most favorable orientation $\psi_{\rm mf}(\theta)$ of \mathbf{m}_1 at angular positions $0 \le \theta \le \pi$. Include the result as a dashed line in the contour plot.

(c) Determine the energetically most favorable angular position $\theta_{mf}(\psi)$ for a magnetic moment \mathbf{m}_1 oriented at angle $0 \le \psi \le \pi$. Include the result as a dotted line in the contour plot.

(d) Describe the relation of the two lines to specific contour features.

Solution: