[lex148] Magnetic dipole interaction IV

This is an extension of [lex130], where we have expressed the interaction potential of two magnetic dipoles \mathbf{m} and \mathbf{m}_{1} as shown in the form,

$$
U=-\mathbf{m}_{1} \cdot \mathbf{B}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \frac{m m_{1}}{r^{3}} \bar{U}(\theta, \psi)
$$

as a function of the angles $0 \leq \theta \leq \pi$ and $-\pi \leq \psi \leq \pi$.
(a) Establish a contour plot of $\bar{U}(\theta, \psi)$.
(b) Determine the energetically most favorable orientation $\psi_{\mathrm{mf}}(\theta)$ of \mathbf{m}_{1} at angular positions $0 \leq \theta \leq \pi$. Include the result as a dashed line in the contour plot.
(c) Determine the energetically most favorable angular position $\theta_{\mathrm{mf}}(\psi)$ for a magnetic moment \mathbf{m}_{1} oriented at angle $0 \leq \psi \leq \pi$. Include the result as a dotted line in the contour plot.
(d) Describe the relation of the two lines to specific contour features.

Solution:

