[lex141] Circularly polarized plane electromagnetic wave

Consider a plane electromagnetic wave characterized by an electric field of the form,

$$
\mathbf{E}(\mathbf{x}, t)=E_{0}[\sin (\mathbf{k} \cdot \mathbf{x}-\omega t) \hat{\mathbf{j}}+\cos (\mathbf{k} \cdot \mathbf{x}-\omega t) \hat{\mathbf{k}}], \quad \mathbf{k}=k_{x} \hat{\mathbf{i}}+k_{y} \hat{\mathbf{j}}+k_{z} \hat{\mathbf{k}}, \quad \mathbf{x}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}
$$

(a) Determine the associated expression for the magnetic field $\mathbf{B}(\mathbf{x}, t)$ that makes the plane wave circularly polarized and traveling in the positive x-direction. Simplify the expression for $\mathbf{E}(\mathbf{x}, t)$ in the process.
(b) Determine the Poynting vector $\mathbf{S}(\mathbf{x}, t)$ and the energy density $u(\mathbf{x}, t)$ of this wave. Simplify both expressions as much as possible.

Solution:

