
[lex138] Conducting ring moving into region of magnetic field II

Consider a conducting ring of radius a and resistance R being moved at constant velocity v into a region of uniform magnetic field B directed as shown.

- (a) Calculate the magnetic flux $\Phi_B(x)$ through the ring.
- (b) Plot the function $\Phi_B(x)$ vs x appropriately scaled.
- (c) Infer from $\Phi_B(x)$, via Faraday's law, the induced EMF $\mathcal{E}(x)$ around the ring.
- (d) Plot the function $\mathcal{E}(x)$ vs x appropriately scaled.
- (e) Determine the direction (cw/ccw) of the induced current.
- (f) Calculate the instantaneous power P(x) dissipated when the ring is at position x.
- (g) Determine the total energy E dissipated in the ring during its entry into the magnetic field.

Solution: