[lex135] Scalar and vector potentials in the Coulomb gauge

The Coulomb gauge condition, $\nabla \cdot \mathbf{A}=0$, reduces Maxwell's equations for the scalar and vector potentials $\Phi(\mathbf{x})$ and $\mathbf{A}(\mathbf{x})$ as follows:

$$
\nabla^{2} \Phi=-\frac{\rho}{\epsilon_{0}}, \quad \nabla^{2} \mathbf{A}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=-\mu_{0} \mathbf{J}+\frac{1}{c^{2}} \nabla \frac{\partial \Phi}{\partial t}
$$

Show that they can be decoupled into

$$
\frac{1}{c^{2}} \nabla \frac{\partial \Phi}{\partial t}=\mu_{0} \mathbf{J}_{\mathrm{L}}, \quad \nabla^{2} \mathbf{A}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=-\mu_{0} \mathbf{J}_{\mathrm{T}}
$$

where

$$
\mathbf{J}=\mathbf{J}_{\mathrm{L}}+\mathbf{J}_{\mathrm{T}}, \quad \nabla \times \mathbf{J}_{\mathrm{L}}=0, \quad \nabla \cdot \mathbf{J}_{\mathrm{T}}=0
$$

are the (irrotational) longitudinal and (solenoidal) transverse parts of the current density for which explicit expressions are derived in [lex134].

Solution:

