[lex131] Magnetic dipole interaction II

A magnetic dipole \mathbf{m} at the origin of the coordinate system generates the magnetic field [lex36],

$$
\mathbf{B}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \frac{3 \hat{\mathbf{r}}(\mathbf{m} \cdot \hat{\mathbf{r}})-\mathbf{m}}{r^{3}}, \quad r=|\mathbf{x}|, \quad \hat{\mathbf{r}}=\frac{\mathbf{x}}{r}
$$

When a second magnetic dipole \mathbf{m}_{1} is placed into this field at position \mathbf{x}, the interaction potential energy is $U=-\mathbf{m}_{1} \cdot \mathbf{B}(\mathbf{x})$. Consider the case where \mathbf{m} is oriented in z-direction while \mathbf{m}_{1} is placed in the $y z$-plane as in [lex131]. Here we allow \mathbf{m} to be oriented out of the $y z$-plane and specify its orientation by the two angles ψ, ϕ via $x^{\prime}=\sin \psi \cos \phi, y^{\prime}=\sin \psi \sin \phi, z^{\prime}=\cos \psi$.
(a) Express the scaled interaction energy $\bar{U}(\theta, \psi, \phi)$ constructed from

$$
U=\frac{\mu_{0}}{4 \pi} \frac{m m_{1}}{r^{3}} \bar{U}(\theta, \psi, \phi)
$$

as a function of the angles $0 \leq \theta \leq \pi,-\pi \leq \psi \leq \pi$ and $-\pi \leq \phi \leq \pi$.
(b) Identify all angular positions θ for which the energetically most favorable orientation of \mathbf{m}_{1} is independent of the azimuthal angle ϕ.
(c) Show that for all other angular positions θ the energetically most favorable orientation of \mathbf{m}_{1} is in the plane spanned by vectors \mathbf{m} and $\hat{\mathbf{r}}$.

Solution:

