[lex131] Magnetic dipole interaction II

A magnetic dipole \mathbf{m} at the origin of the coordinate system generates the magnetic field [lex36],

$$\mathbf{B}(\mathbf{x}) = \frac{\mu_0}{4\pi} \frac{3\hat{\mathbf{r}} \left(\mathbf{m} \cdot \hat{\mathbf{r}}\right) - \mathbf{m}}{r^3}, \quad r = |\mathbf{x}|, \quad \hat{\mathbf{r}} = \frac{\mathbf{x}}{r},$$

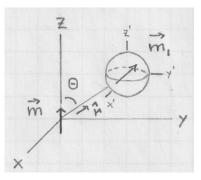
When a second magnetic dipole \mathbf{m}_1 is placed into this field at position \mathbf{x} , the interaction potential energy is $U = -\mathbf{m}_1 \cdot \mathbf{B}(\mathbf{x})$. Consider the case where \mathbf{m} is oriented in z-direction while \mathbf{m}_1 is placed in the yz-plane as in [lex131]. Here we allow \mathbf{m} to be oriented out of the yz-plane and specify its orientation by the two angles ψ, ϕ via $x' = \sin \psi \cos \phi, y' = \sin \psi \sin \phi, z' = \cos \psi$. (a) Express the scaled interaction energy $\overline{U}(\theta, \psi, \phi)$ constructed from

$$U = \frac{\mu_0}{4\pi} \frac{mm_1}{r^3} \bar{U}(\theta, \psi, \phi),$$

as a function of the angles $0 \le \theta \le \pi$, $-\pi \le \psi \le \pi$ and $-\pi \le \phi \le \pi$.

(b) Identify all angular positions θ for which the energetically most favorable orientation of \mathbf{m}_1 is independent of the azimuthal angle ϕ .

(c) Show that for all other angular positions θ the energetically most favorable orientation of \mathbf{m}_1 is in the plane spanned by vectors \mathbf{m} and $\hat{\mathbf{r}}$.



Solution: