[lex130] Magnetic dipole interaction I

A magnetic dipole moment \mathbf{m} at the origin of the coordinate system generates the magnetic field,

$$
\mathbf{B}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \frac{3 \hat{\mathbf{r}}(\mathbf{m} \cdot \hat{\mathbf{r}})-\mathbf{m}}{r^{3}}, \quad r=|\mathbf{x}|, \quad \hat{\mathbf{r}}=\frac{\mathbf{x}}{r}
$$

When a second magnetic dipole moment \mathbf{m}_{1} is placed into this field at position \mathbf{x}, the interaction potential energy is $U=-\mathbf{m}_{1} \cdot \mathbf{B}(\mathbf{x})$. Consider the case where \mathbf{m} is oriented in z-direction, while \mathbf{m}_{1} is placed in the $y z$-plane and oriented at angle ψ away from the z-axis in the $y z$-plane as shown.
(a) Express the scaled interaction energy $\bar{U}(\theta, \psi)$ constructed from

$$
U=\frac{\mu_{0}}{4 \pi} \frac{m m_{1}}{r^{3}} \bar{U}(\theta, \psi), \quad m=|\mathbf{m}|, \quad m_{1}=\left|\mathbf{m}_{1}\right|
$$

as a function of the angles $0 \leq \theta \leq \pi$ and $-\pi \leq \psi \leq \pi$.
(b) Find the energetically most favorable orientation ψ of \mathbf{m}_{1} at angular positions (i) $\theta=0$, (ii) $\theta=\pi / 2$, and (iii) $\theta=\pi / 4$.
(c) Find the energetically most favorable angular position θ for a magnetic moment \mathbf{m}_{1} oriented at angle $\psi=\pi / 2$.

Solution:

