[lex130] Magnetic dipole interaction I

A magnetic dipole moment \mathbf{m} at the origin of the coordinate system generates the magnetic field,

$$\mathbf{B}(\mathbf{x}) = \frac{\mu_0}{4\pi} \frac{3\hat{\mathbf{r}} \left(\mathbf{m} \cdot \hat{\mathbf{r}}\right) - \mathbf{m}}{r^3}, \quad r = |\mathbf{x}|, \quad \hat{\mathbf{r}} = \frac{\mathbf{x}}{r}$$

When a second magnetic dipole moment \mathbf{m}_1 is placed into this field at position \mathbf{x} , the interaction potential energy is $U = -\mathbf{m}_1 \cdot \mathbf{B}(\mathbf{x})$. Consider the case where \mathbf{m} is oriented in z-direction, while \mathbf{m}_1 is placed in the yz-plane and oriented at angle ψ away from the z-axis in the yz-plane as shown. (a) Express the scaled interaction energy $\overline{U}(\theta, \psi)$ constructed from

$$U = \frac{\mu_0}{4\pi} \frac{mm_1}{r^3} \bar{U}(\theta, \psi), \quad m = |\mathbf{m}|, \quad m_1 = |\mathbf{m}_1|,$$

as a function of the angles $0 \le \theta \le \pi$ and $-\pi \le \psi \le \pi$.

(b) Find the energetically most favorable orientation ψ of \mathbf{m}_1 at angular positions (i) $\theta = 0$, (ii) $\theta = \pi/2$, and (iii) $\theta = \pi/4$.

(c) Find the energetically most favorable angular position θ for a magnetic moment \mathbf{m}_1 oriented at angle $\psi = \pi/2$.

Solution: