[lex125] Conducting hemispheres at opposite electric potential

A thin spherical shell of radius a centered a the origin of the coordinate system consists of two conducting hemispheres electrically insulated from each other and oppositely charged to electric potential $\pm \Phi_{0}$ at $z= \pm 0$, respectively. (a) Use the Green's function established in [lln21],

$$
\Phi(\mathbf{x})=\frac{1}{4 \pi} \int d \Omega^{\prime} \Phi\left(a, \theta^{\prime}, \phi^{\prime}\right) \frac{a\left(x^{2}-a^{2}\right)}{\left[x^{2}+a^{2}-2 a x \cos \gamma\right]^{3 / 2}} \quad: x>a
$$

where $\cos \gamma=\cos \theta \cos \theta^{\prime}+\sin \theta \sin \theta^{\prime} \cos \left(\phi-\phi^{\prime}\right)$, to infer an explicit integral expression for the electric potential in the space outside the sphere.
(b) Evaluate the resulting integral expression for field points on the z-axis.
(c) Expand the integrand of the expression obtained for part (a) in powers of a / x and evaluate the integral for the leading term and the first correction.

Solution:

