[lex124] Conducting sphere between point charges

Two point charges $\pm Q$ are placed at $z=\mp R$ and a grounded conducting sphere of radius a is centered at $z=0$.
(a) Use the result developed in [lam10] for one point charge near a grounded conducting sphere in combination with the superposition principle to construct an expression $\Phi(r, \theta)$ for the electric potential
(b) Expand the function $\Phi(r, \theta)$ in inverse powers of R keeping only the dominant term.
(c) Show that the combined limit $Q \rightarrow \infty, R \rightarrow \infty$, fixed Q / R^{2} recovers the familiar result of a conducting sphere in a uniform electric field.
(d) Calculate from the asymptotic potential obtained in part (b) the surface charge density $\sigma(\theta)$ on the conducting sphere and the electric dipole moment $\mathbf{p}=p_{0} \hat{\mathbf{z}}$.

Solution:

