[lex118] Radiation fields and Poynting vector for half-wave linear antenna

Given the vector potential in the radiation zone,

$$
\mathbf{A}(\mathbf{x}, t)_{\mathrm{rad}}=-\frac{\mu_{0} I_{0}}{2 \pi k r} \frac{\cos \left(\frac{\pi}{2} \cos \theta\right)}{\sin ^{2} \theta} \sin (k r-\omega t) \hat{\mathbf{z}}
$$

for a half-wave linear antenna as derived in $[\ln 19]$, calculate the the radiation magnetic field from $\mathbf{B}=\nabla \times \mathbf{A}$, the radiation electric field from $\mathbf{E}=c \mathbf{B} \times \hat{\mathbf{r}}$, and the Poynting vector in the radiation zone from $\mathbf{S}=\mathbf{E} \times \mathbf{B} / \mu_{0}$.
Hint: Use spherical coordinates and neglect all field terms that decay faster than $\sim r^{-1}$.

Solution:

