[lex116] Poynting vector and radiation power of electric dipole

(a) Given the electric and magnetic radiation fields,

$$
\mathbf{E}(\mathbf{x}, t)_{\mathrm{rad}}=\frac{\mu_{0}}{4 \pi r}\left[\hat{\mathbf{r}}\left(\left.\hat{\mathbf{r}} \cdot \frac{d^{2} \mathbf{p}}{d t^{2}}\right|_{t_{r}}\right)-\left.\frac{d^{2} \mathbf{p}}{d t^{2}}\right|_{t_{r}}\right], \quad \mathbf{B}(\mathbf{x}, t)_{\mathrm{rad}}=-\frac{\mu_{0}}{4 \pi r c} \hat{\mathbf{r}} \times\left.\frac{d^{2} \mathbf{p}}{d t^{2}}\right|_{t_{r}}, \quad t_{r} \doteq t-\frac{r}{c}
$$

worked out in [lex222] and [lex114] for the radiation of an electric dipole $\mathbf{p}(t)$, show that the Poynting vector in the radiation zone becomes

$$
\mathbf{S}(\mathbf{x}, t)_{\mathrm{rad}} \doteq \frac{1}{\mu_{0}} \mathbf{E}(\mathbf{x}, t)_{\mathrm{rad}} \times \mathbf{B}(\mathbf{x}, t)_{\mathrm{rad}}=\frac{\mu_{0} / c}{(4 \pi r)^{2}}\left[\left(\left.\frac{d^{2} \mathbf{p}}{d t^{2}}\right|_{t_{r}}\right)^{2}-\left(\left.\hat{\mathbf{r}} \cdot \frac{d^{2} \mathbf{p}}{d t^{2}}\right|_{t_{r}}\right)^{2}\right] \hat{\mathbf{r}}
$$

representing the energy per unit time and and unit area radiated in its direction.
(b) Calculate the radiation power of the electric dipole $\mathbf{p}(t)$ from the integral of the vector \mathbf{S} over a spherical surface at radius r,

$$
P(r, t)=\oint d \Omega r^{2} \hat{\mathbf{r}} \cdot \mathbf{S}(\mathbf{x}, t)_{\mathrm{rad}}
$$

This quantity is independent of r as dictated by energy conservation.

Solution:

