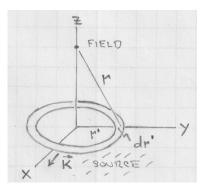
[lex112] Planar surface current abruptly established

A surface current with current density, $\mathbf{J}(\mathbf{x},t) = K_0 \theta(t) \delta(z) \hat{\mathbf{i}}$, in the *xy*-plane and moving in *x*-direction is abruptly established to the constant value K_0 at time t = 0. No charge density is involved: $\rho \equiv 0$.


(b) Start from the expression,

$$\mathbf{A}(\mathbf{x},t) = \frac{\mu_0}{4\pi} \int d^3x' \, \frac{\mathbf{J}(\mathbf{x}',t-|\mathbf{x}-\mathbf{x}'|/c)}{|\mathbf{x}-\mathbf{x}'|},$$

developed in [lln19] for the vector potential, to calculate $\mathbf{A}(z,t)$ explicitly for the situation at hand. (b) Infer expressions for the magnetic field $\mathbf{B}(z,t)$ and the electric field $\mathbf{E}(z,t)$. Calculate the Poynting vector $\mathbf{S}(z,t)$. Which of the three vectors change direction between z > 0 and z < 0. (c) Show that the fields \mathbf{E} and \mathbf{B} (at z > 0) satisfy Faraday's law and Ampère's law.

(d) Explain why radiation near the source persists for all t > 0 even though charge acceleration happens only at t = 0.

Hint: Use polar coordinates as shown to carry out the integral.

Solution: