[lex111] Green's function of operator $\nabla^{2}+k^{2}$
The function $G\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$ is the Green's function of the operator $\nabla^{2}+k^{2}$ if it satisfies the equation,

$$
\begin{equation*}
-\left(\nabla^{2}+k^{2}\right) G\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=4 \pi \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) . \tag{1}
\end{equation*}
$$

Show that the Green's function depends on the distance variable, $r \doteq\left|\mathbf{x}-\mathbf{x}^{\prime}\right|$, and has the form,

$$
\begin{equation*}
G(r)=\frac{e^{\imath k r}}{r} . \tag{2}
\end{equation*}
$$

Hint: Use spherical coordinates and full rotational symmetry. Show first that the left-hand side of (1) with (2) vanishes for $r \neq 0$. The integral of the right-hand side over the volume of a sphere of radius $R>0$ is 4π. Show that the same is the case for the left-hand side.

Solution:

