[lex108] Helmholtz equation for wave guide II: TM modes

Consider TM modes in a wave guide with a cross section of arbitrary shape \mathcal{C}. From [lex104] we know that the ansatz,

$$
\mathbf{B}(\mathbf{x}, t)=-\nabla \times\left[\psi(x, y) e^{\imath(k z-\omega t)} \hat{\mathbf{k}}\right]
$$

satisfies the wave equation if the function $\psi(x, y)$ satisfies the Helmholtz equation,

$$
\nabla^{2} \psi=-\gamma^{2} \psi, \quad \gamma^{2}=+\frac{\omega^{2}}{c^{2}}-k^{2}
$$

(a) Use Ampère's law to show that the associated magnetic field is

$$
\mathbf{E}(\mathbf{x}, t)=\frac{c^{2} k}{\omega}\left[\nabla \psi(x, y)-\imath \frac{\gamma^{2}}{k} \psi(x, y) \hat{\mathbf{k}}\right] e^{\imath(k z-\omega t)}
$$

(b) Show that the boundary conditions, $\mathbf{B}_{\perp}=0$ and $\mathbf{E}_{\|}=0$ are encoded in $\psi=0$ for points on \mathcal{C}.

Solution:

