[lex107] Helmholtz equation for wave guide I: TE modes

Consider TE modes in a wave guide with a cross section of arbitrary shape \mathcal{C}. In [lex104] we have shown that the ansatz,

$$
\mathbf{E}(\mathbf{x}, t)=\nabla \times\left[-\psi(x, y) e^{\imath(k z-\omega t)} \hat{\mathbf{k}}\right],
$$

satisfies the wave equation if the function $\psi(x, y)$ satisfies the Helmholtz equation,

$$
\nabla^{2} \psi=-\gamma^{2} \psi, \quad \gamma^{2}=+\frac{\omega^{2}}{c^{2}}-k^{2} .
$$

(a) Use Faraday's law to show that the associated magnetic field is

$$
\mathbf{B}(\mathbf{x}, t)=\frac{k}{\omega}\left[-\nabla \psi(x, y)+\imath \frac{\gamma^{2}}{k} \psi \hat{\mathbf{k}}\right] e^{\imath(k z-\omega t)} .
$$

(b) Show that the boundary conditions, $\mathbf{B}_{\perp}=0$ and $\mathbf{E}_{\|}=0$ are encoded in $\hat{\mathbf{n}} \cdot \nabla \psi=0$ for all points on \mathcal{C}.

Solution:

