[lex101] Reflection of electromagnetic wave from conductor

Consider a plane wave of the form $\mathbf{E}(\mathbf{x}, t)=\mathbf{E}_{0} e^{\imath(\kappa x-\omega t)}$ with $\mathbf{E}_{0} \perp \hat{\mathbf{i}}$ being reflected from a conductor with permittivity ϵ, permeability μ, and conductivity σ. The surface is in the $y z$-plane. The goal is to derive an expression for the reflectivity for a good conductor (a material with $\sigma \gg \epsilon \omega)$. The complex wave number of the wave in a good conductor is [$\ln 17][\operatorname{lex} 100]$

$$
\kappa=\kappa_{1}+\imath \kappa_{2}, \quad \kappa_{1} \simeq \kappa_{2} \simeq \sqrt{\frac{\mu \sigma \omega}{2}} .
$$

Starting from the expression [lln17],

$$
\frac{E_{0}^{\prime \prime}}{E_{0}}=\frac{\mu_{2} n_{1}-\mu_{1} n_{2}}{\mu_{2} n_{1}+\mu_{1} n_{2}}
$$

for the amplitude ratio between reflected and incident wave in a case of normal reflection, use the specifications $\mu_{1}=\mu_{2}=\mu_{0}, n_{1}=1, n_{2}=c / v_{2}=c \kappa / \omega$ to derive the following expression for the reflectivity of a good conductor:

$$
R=1-\sqrt{\frac{8 \omega \epsilon_{0}}{\sigma}}
$$

Solution:

