[lex100] Electromagnetic wave in a conductor

In a metal (uncharged material with permittivity ϵ, permeability μ, and conductivity σ), Maxwell's equations read [lln17],

$$
\nabla \cdot \mathbf{E}=0, \quad \nabla \cdot \mathbf{B}=0, \quad \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \times \mathbf{B}=\mu \sigma \mathbf{E}+\mu \epsilon \frac{\partial \mathbf{E}}{\partial t}
$$

(a) Show that the electric an magnetic fields then satisy wave equations amended by an attenuation term as follows:

$$
\nabla^{2} \mathbf{E}=\mu \sigma \frac{\partial \mathbf{E}}{\partial t}+\mu \epsilon \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}, \quad \nabla^{2} \mathbf{B}=\mu \sigma \frac{\partial \mathbf{B}}{\partial t}+\mu \epsilon \frac{\partial^{2} \mathbf{B}}{\partial t^{2}}
$$

(b) Show that a plane-wave solution of the form $\mathbf{E}(\mathbf{x}, t)=\mathbf{E}_{0} e^{\imath(\kappa x-\omega t)}$ with $\mathbf{E}_{0} \perp \hat{\mathbf{i}}$, is a solution for the complex wave number, $\kappa=\kappa_{1}+\imath \kappa_{2}$, where

$$
\kappa_{1}=\omega \sqrt{\frac{\epsilon \mu}{2}}\left[\sqrt{1+\left(\frac{\sigma}{\epsilon \omega}\right)^{2}}+1\right]^{1 / 2}, \quad \kappa_{2}=\omega \sqrt{\frac{\epsilon \mu}{2}}\left[\sqrt{1+\left(\frac{\sigma}{\epsilon \omega}\right)^{2}}-1\right]^{1 / 2}
$$

Solution:

