
Dielectrics I [lln9]

Induced electric dipole moments:

Atoms in their ground state have zero electric dipole moment to very high
precision. Atoms are polarizable by an electric field, which slightly displaces
positive charge carriers (nuclei) and negative charge carriers (electrons) in
opposite directions.

Induced electric dipole moment: p
.
= q
[
〈x+〉 − 〈x−〉

]
= αE.

Atomic polarizability: α [Cm2/V].

Practical scale: 4πε0R
3, inferred from the dipole moment p = 4πε0R

3Eap of
a conducting sphere in a uniform field Eap. [lex17][lex217]

Empirical data for α of selected elements compiled separately.[lam16]

Calculation of α via quantum mechanical perturbation theory.

Result for hydrogen:
α

4πε0a3B
=

9

2
.

Bohr radius: aB =
4πε0~2

mee2
' 5.29× 10−11m.
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Polar molecules:

Some molecules have a permanent electric dipole moment.

Practical unit: 1D = 3.34× 10−30Cm (Debye).

Dipole moment of H2O molecule: p = 1.8546D.

Comparative scale: eaB ' 2.5 D.

Polar molecules in gases or liquids have random orientation. Due to thermal
fluctuations, the average dipole moment of a polar molecule is zero: 〈p〉 = 0.

An external electric field E = E0 k̂ exerts a torque p×E on polar molecules,
which tends to align the dipole moments parallel to the field.

The average dipole moment is then the result of a statistical mechanical prob-
lem. The resulting mathematical expression is better known in a different
physical context (Langevin paramagnet):

〈p〉 · k̂ = p

[
cothx− 1

x

]
, x

.
=
pE0

kBT
.

〈p〉 pE0�kBT−→ αE, α =
p2

3kBT
.
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Polarization and bound charge:

We introduce a vector-field quantity representing the average dipole-moment
density at the center of a mesoscopic region of space.

[lam20] Polarization: P(x) [Cm/m3] = [C/m2].

Polarization involves the displacement of charge that is bound at the atomic
or molecular level. In a continuum description, this gives rise to a surface
charge density σb and, less frequently, to a volume charge density ρb.

B Potential of electric dipole: Φ(x) =
1

4πε0

p · r̂
r2

=
1

4πε0

(x− xp) · p
|x− xp|3

.[lln5]

B Potential of polarized material: Φ(x) =
1

4πε0

∫
V

d3x′
(x− x′) ·P(x′)

|x− x′|3
.

B Use mathematical identity:
x− x′

|x− x′|3
= ∇′

(
1

|x− x′|

)

⇒ Φ(x) =
1

4πε0

∫
V

d3x′
(
∇′ 1

|x− x′|

)
·P(x′).

B Use mathematical identity: (∇f) ·A = ∇ · (fA)− f(∇ ·A)[gmd1-A]

⇒ Φ(x) =
1

4πε0

∫
V

d3x′
[
∇′ ·

(
P(x′)

|x− x′|

)
− ∇

′ ·P(x′)

|x− x′|

]
.

B Use Gauss’s theorem for first term:[gmd1-B]

Φ(x) =
1

4πε0

∮
S

da′
n̂ ·P(x′)

|x− x′|
− 1

4πε0

∫
V

d3x′
∇′ ·P(x′)

|x− x′|
.

B Identify bound surface and volume charge densities in integrals: [lex29]

σb = n̂ ·P [C/m2], ρb = −∇ ·P [C/m3].

⇒ Φ(x) =
1

4πε0

∮
S

da′
σb(x′)

|x− x′|
+

1

4πε0

∫
V

d3x′
ρb(x′)

|x− x′|
.

Uniform polarization produces
bound surface charge density,
but no volume charge density.

Bound charge, like free charge,
is the source of an electric field.
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Displacement field:

Fundamental equations of electrostatics: ∇× E = 0, ∇ · E =
ρ

ε0
.

Density of free and bound charge on dielectric: ρ(x) = ρf(x) + ρb(x).

Free charge is excess charge. It is not, in general, mobile charge.

Polarization charge density: ρb(x) = −∇ ·P(x).

Gauss’s law for electric field:

B integral version: ε0

∮
S

E · da = Q(in),

B differential version: ε0∇ · E = ρ,

B application to dielectric: ε0∇ · E = ρf + ρb = ρf −∇ ·P.

Consequence: ρf = ∇ · [ε0E + P].

Displacement field: D(x)
.
= ε0E(x) + P(x) [C/m2].

Gauss’s law for displacement field:

B differential version: ∇ ·D = ρf ,

B integral version:

∮
S

D · da = Q
(in)
f .

Boundary conditions involving dielectrics:

B Electric field E at dielectric interface or surface:

– Electrostatic field is irrotational: ∇× E = 0.

– Consequence: The tangential part of the electric field is continuous
at the surface/interface: ∆E‖ = 0.

– Presence of bound and/or free surface charge: σ = σb + σf .

– Consequence: The normal part of the electric is discontinuous at
the surface/interface: ∆E⊥ = σ/ε0.

**l.rLlp(-;
7

ffi
da V A-

I

\EtJ
b e

rf;, Ir-L--Lr 
I

I
rol

3



B Displacement field D at dielectric interface or surface:

– Gauss’s law for the displacement field reads, ∇ ·D = ρf .

– Consequence: The normal component of the displacement field
is continuous at a surface/interface with only bound charge σb
present: ∆D⊥ = 0. It is discontinuous if also free charge σf is
present at the surface/interface: ∆D⊥ = σf .

– The displacement field D is not, in general, irrotational.

– Consequence: The tangential part D‖ of the displacement is not
necessarily continuous at the surface/interface.

Linear dielectrics:

The relation between the fields E and D requires a constitutive equation
based on empirical data.

Gases, liquids, and amorphous solids are isotropic dielectrics. Crystalline
matter is, in general, an anisotropic dielectric.

In electric fields that are not too strong, the relation between the fields E
and D is linear.

In linear dielectrics, the strength (magnitude) of E and D are proportional to
one another. In isotropic dielectrics, the directions of E and D are the same,
whereas in anisotropic dielectrics, the directions are, in general, different.

Linear dielectric crystalline matter is described by tensor relations (a more
advanced topic).

Isotropic linear dielectrics are specified by one of three alternative material
parameters: [lex30][lex32]

[lex48][lex199]

[lex200]– susceptibility: χe,

– permittivity: ε,

– dielectric constant: κ.

Linear relations: P = χeε0E, D = εE = κε0E.

Relations between material parameters: ε = κε0 = (1 + χe)ε0.

Tabulated data of dielectric constant are compiled separately.[lam16]
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Poisson equation for uniform linear dielectric:

Linear dielectric: D = εE = −ε∇Φ.

Uniform linear dielectric: ε = const.

Gauss’s laws for E and D: ε0∇ · E = ρf + ρb, ∇ ·D = ρf .

Two versions of the Poisson equation follow:

⇒ −∇2Φ =
ρf
ε
, −∇2Φ =

ρf + ρb
ε0

.

Consistency implies the following relation between the densities of bound
and free charge in a uniform linear dielectric:

⇒ ρb(x) =

(
1

κ
− 1

)
ρf(x) or ερb(x) = (ε0 − ε)ρf(x).

Note that bound-charge and free-charge densities at any given location have
opposite sign.

Clausius-Mossotti model:

Thus far we have described effects electric polarization on the microscopic
level by introducing the polarizability α and on the macroscopic level by
introducing the dielectric constant κ.

The relation between the two descriptions (one discrete, the other continuous)
is far from straightforward.

The Clausius-Mossotti model takes into account that the electric field which
is responsible for the polarization of an atom must exclude the electric field
that is the result of its own polarization:

p = α(E− Es).

What the field Es is, is not easy to establish. The Clausius-Mossotti model
uses the field inside a uniformly polarized sphere for that purpose: [lex29]

Es = − P

3ε0
= −np

3ε0
; n =

1

v
, v =

4π

3
a3.

The bridge between α and κ can thus be built as follows:

P = nα

(
E +

P

3ε0

)
= χeε0E ⇒ χe =

3nα

3ε0 − nα
⇒ α =

3ε0
n

κ− 1

κ+ 2
.
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Energy density in dielectric:

Derivation for a situation with bulk free-charge density ρf(x), which deter-
mines the bulk bound-charge density ρb(x) as discussed earlier.

Augmentation of free charge within dielectric: δρf(x).

Increment of electrostatic potential energy: δU =

∫
d3xδρf(x)Φ(x).

Gauss’s law for displacement field: δρf(x) = ∇ · δD(x).

Integration by parts:

∫
d3x [∇ · δD(x)]Φ(x) =

∫
d3x δD(x) · [−∇Φ(x)].

Transformation of integrand:

δD · [−∇Φ] = δD · E = εδE · E =
1

2
εδ(E · E) =

1

2
δ(D · E).

⇒ δU =

∫
d3x

1

2
δ
(
D(x) · E(x)

)
= δ

(
1

2

∫
d3xD(x) · E(x)

)
.

Electrostatic energy stored in dielectric:

U =
1

2

∫
d3xD(x) · E(x).

Capacitance with dielectric:

Parallel-plate geometry: area A, width d.

Free charge on plates: Q = σfA.

Displacement field: D = σf (inferred from Gauss’s law).

Electric field: E = D/ε.

Polarization: P = χeε0E = σb.

Charge densities:
σb
σf

=
P

D
=
χeε0E

εE
=
κ− 1

κ
.

Voltage: ∆Φ
.
= V = Ed =

Qd

εA
.

Capacitance: C
.
=
Q

V
=
εA

d
= κCvac.

Dielectrics enhance capacitance. [lex44][lex45]
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Impact of dielectric added to capacitor:

Case #1: Two identical capacitors are charged up without dielectric and
then disconnected from the voltage source. Then a dielectric is inserted into
one of the capacitors.
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vacuum dielectric

charge Q0 Q = Q0

displacement field D0 D = D0

electric field E0 =
D0

ε0
E =

D

ε
=
E0

κ
< E0

voltage V0 V =
V0
κ
< V0

capacitance C0 =
Q0

V0
C =

Q

V
= κC0 > C0

potential energy U0 =
Q2

0

2C0

U =
Q2

2C
=
U0

κ
< U0

energy density u
(0)
E =

1

2
D0E0 uE =

1

2
DE =

u
(0)
E

κ
< u

(0)
E

Inserting the dielectric leaves the charge on the plates invariant, but lowers
the voltage across them.

The electric field decreases with the voltage when the dielectric is added, but
the displacement field remains the same.

The energy density goes down because the electric field decreases. Where
does that energy go? The answer is worked out in the exercises. [lex31]

The capacitance is a device property. It always increases when a dielectric is
inserted, no matter what the circumstances are.

7



Case #2: Two identical capacitors without dielectric are charged up and
then remain connected with the voltage source. Then a dielectric is inserted
into one of the capacitors.
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EL
vacuum dielectric

voltage V0 V = V0

electric field E0 E = E0

displacement field D0 = ε0E0 D = εE = κD0 > D0

charge Q0 Q = κQ0 > Q0

capacitance C0 =
Q0

V0
C =

Q

V
= κC0 > C0

potential energy U0 =
1

2
C0V

2
0 U =

1

2
CV 2 = κU0 > U0

energy density u
(0)
E =

1

2
D0E0 uE =

1

2
DE = κu

(0)
E > u

(0)
E

Inserting the dielectric leaves the voltage across the plates invariant, but
augments the charge on them.

The electric field remains constant with the voltage when the dielectric is
added, but the displacement field now increases.

The energy density goes up because the displacement field increases. Where
does that energy come from? The answer is worked out in the exercises. [lex31]

The capacitance is a device property. It always increases when a dielectric is
inserted, no matter what the circumstances are.

It is instructive to compare the insertion of dielectric materials and the in-
sertion of conducting materials (without contact) between capacitor plates.

[lex53][lex54]
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