
Electrostatics III [lln7]

Uniqueness theorem for Laplace equation:

Laplace equation: ∇2Φ(x) = 0.

Boundary: Surface S that either fully encloses a finite region of space V or
separates an infinite region from other regions. Part of S may be at infinity.

Dirichlet boundary conditions: Φ(x) known on S.

Neumann boundary conditions: n̂ · ∇Φ(x) known on S.

Uniqueness theorem: Any solution Φ(x) of the Laplace equation with a full
set of boundary conditions (Dirichlet or Neumann or mixed) is unique.

A proof of the uniqueness theorem is sketched in the following:

B Can two solutions Φ1(x), Φ2(x) be distinct? The theorem says no.

B We begin by defining a vector function with product structure:

F(x)
.
= [Φ1(x)− Φ2(x)]︸ ︷︷ ︸

g(x)

∇[Φ1(x)− Φ2(x)]︸ ︷︷ ︸
G(x)

.

B Next we invoke Gauss’s theorem,∫
V

d3x∇ · F(x) =

∮
S

da · F(x).

for the vector field F(x).

B Since both solutions Φ1(x), Φ2(x) are identical at the boundaries, the
surface integral vanishes and, therefore, the volume integral as well:∫

V

d3x∇ · F(x) =

∫
S

da[Φ1(x)− Φ2(x)]n̂ · ∇[Φ1(x)− Φ2(x)] = 0. (1)

B Given that the construction of F(x), we can apply the following math-
ematical identity (well established in vector analysis) to it:

∇ · (gG) = ∇g ·G + g∇ ·G.

B Carrying out this task and recalling that Φ1(x), Φ2(x) both solve the
Laplace equation we obtain

∇ · F(x) = ∇[Φ1(x)− Φ2(x)] · ∇[Φ1(x)− Φ2(x)]

+ [Φ1(x)− Φ2(x)]∇2[Φ1(x)− Φ2(x)]︸ ︷︷ ︸
0

. (2)
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B Using the result of (2) in the volume integral of (1) yields:∫
V

d3x
{
∇[Φ1(x)− Φ2(x)]

}2
= 0.

B The integrand is non-negative. Therefore, integral can only vanish if
the integrand vanishes identically.

B Two functions whose gradients are identical can only differe by a con-
stant.

Φ1(x) = Φ2(x) + const.

B The boundary conditions demand that this constant is zero.

B We conclude that the solution of the Laplace equation is unique:

Keep in mind that the uniqueness theorem as proven here does not make any
claims regarding the uniqueness of charge configurations on the surfaces of
conductors that eneter as boundary conditions.
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Separable solutions in Cartesian coordinates:

Cartesian coordinates are the preferred choice for electrostatic situations with
flat and rectangular boundaries.

Laplace equation in Cartesian coordinates:[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
Φ(x, y, z) = 0. (3)

The methodology explored here aims to reduce the PDE (3) into ODEs by
means of a product ansatz for the solution:

Φ(x, y, z)
.
= X(x)Y (y)Z(z). (4)

Each term in (3) acts on a different factor of (4):

d2X(x)

dx2
Y (z)Z(z) +X(x)

d2Y (y)

dy2
Z(z) +X(x)Y (y)

d2Z(z)

dz2
= 0.

Division by Φ(x, y, z) makes each term a function of a different variable:

1

X(x)

d2X(x)

dx2
+

1

Y (y)

d2Y (y)

dy2
+

1

Z(z)

d2Z(z)

dz2
= 0.

An equation of this type can only be satisfied if each term is a constant and
the three constants add up to zero:

1

X(x)

d2X(x)

dx2
= κ21,

1

Y (y)

d2Y (y)

dy2
= κ22,

1

Z(z)

d2Z(z)

dz2
= κ23, (5)

κ21 + κ22 + κ23 = 0. (6)

Writing the constants as squares of constants κi is a choice of convenience.
The condition (6) can only be satisfied if any nonzero and real κi is accom-
panied by at least one imaginary κj.

The types of general solution of the ODEs (5) can be classified as follows:

B κ21 = 0: X(x) = ax+ b,

B κ21 > 0: X(x) = a eκ1x + b e−κ1x = c sinh(κ1x) + d cosh(κ1x),

B κ21 < 0: X(x) = a eık1x + b e−ık1x = c sin(k1x) + d cos(k1x), κ1 = ık1.

Note the higher symmetry of the hyperbolic and trigonometric functions.
The same classification obtains for the solutions Y (y) and Z(z).
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Permissible combinations which satisfy (6)

B κ21 = κ22 = κ23 = 0.

B κ2i = −κ2j 6= 0, κ2k = 0.

B κ2i > 0, κ2j > 0, κ2k = −κ2i − κ2j < 0.

B κ2i < 0, κ2j < 0, κ2k = −κ2i − κ2j > 0,

The assignment of the κi to specific (Cartesian) coordinates is dictated by
the boundary conditions of a given application.

The second set of κi applies (not exclusively) to situations which are ef-
fectively two-dimensional due to a translational symmetry along one of the
coordinate axes.

In general, the physically relevant solution is a linear combination of product
solutions of the types identified, often in the form of expansions in sets of
orthogonal functions.

Applications to situations with rectangular boundary conditions are found
in the exercises. [lex20][lex21]

[lex126][lex127]
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Separable solutions in spherical coordinates:

In the previous module we have already explored solutions of the Laplace
equation in spherical coordinates.

[lln6] Here we pursue this goal more systematically for cases with the full spherical
symmetry broken but azimuthal symmetry still intact.

The analysis of the general case (without any kind of rotational symmetry)
is significantly more complex and discussed in the additional materials.[lam13]

Electric potential for applications with azimuthal symmetry: Φ(r, θ).

Laplace equation (for this case):[gmd2-A]

∂

∂r

(
r2
∂Φ

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
= 0.

Product ansatz: Φ(r, θ)
.
= R(r)Θ(θ).

Substitute product ansatz for Φ(r, θ) into Laplace equation and divide Φ(r, θ).
These operations separate the two variables:

1

R(r)

d

dr

(
r2
d

dr
R(r)

)
+

1

Θ(θ) sin θ

d

dθ

(
sin θ

d

dθ
Θ(θ)

)
= 0.

The first term is a function of r and the second a function θ. The equation
can only hold if they are constants, equal in magnitude and opposite in sign.

Judicious choice of constant: l(l + 1) : l = 0, 1, 2, . . .

The Laplace equation (PDE) is thus reduced to ODEs for radial function
R(r) and angular function Θ(θ):

d

dr

(
r2
dR

dr

)
− l(l + 1)R = 0, (7)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+ l(l + 1)Θ = 0. (8)

The general solution of ODE (7) is readily found:1

R(r) = Arl +B r−(l+1).

It has two integration constants as expected. Furthermore, it shares the
separation constant l as a parameter with the solution of (8).

1Note that alternative factorizations are in common use, for example, the following:
Φ(r, θ) = [U(r)/r]Θ(θ) ⇒ U(r) = Ar(l+1) +Br−l.
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The ODE (8) can be transformed into into the (well documented) Legendre
equation as sketched in the following:

[lam16]

B u
.
= cos θ ⇒ du

dθ
= − sin θ = −

√
1− u2, P (u)

.
= Θ(θ).

B
1

sin θ

d

dθ
=

1

sin θ

d

du

du

dθ
= − d

du
.

B sin θ
dΘ

dθ
= sin θ

dP

du

du

dθ
= −(1− u2)dP

du
.

B Legendre equation:
d

du

[
(1− u2) dP

du

]
+ l(l + 1)P = 0.

Legendre polynomials Pl(u) are regular solutions of Legendre equation.

B Variable range: −1 ≤ u ≤ 1.

B P0(u) = 1, P1(u) = u, P2(u) = 1
2
(3u2 − 1), . . .

B Pl(u) is symmetric (antisymmetric) for even (odd) l.

B The Pl(u) are a set of orthogonal polynomials.

Expansion of azimuthally symmetric electric potential:

Φ(r, θ) =
∞∑
l=0

[
Al r

l +Bl r
−(l+1)

]
Pl(cos θ). (9)

Physical meaning of specific terms:

B l = 0 ⇒ Φ(r) = A0 +
B0

r
.

A0: arbitrary constant,

B0/r: potential of spherically symmetric charge distribution
inside radius r.

B l = 1 ⇒ Φ(r, θ) = A1r cos θ +
B1 cos θ

r2
.

A1r cos θ: potential generated by uniform electric field in
z-direction,

B1 cos θ/r2: potential generated by electric dipole oriented in
z-direction.
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Consider solutions,

Φ(r, θ) =
∞∑
l=0

[
Al r

l +Bl r
−(l+1)

]
Pl(cos θ).

with boundary conditions specified on sphere of radius R.
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B Non-divergent Φ at r < R (interior region) requires that B
(int)
l = 0.

B Vanishing Φ for r →∞ (exterior region) requires that A
(ext)
l = 0.

B Continuity of Φ at r = R requires matching expansion coefficients in
both regions. This requirement can be satisfied by the condition,

A
(int)
l Rl = B

(ext)
l R−(l+1) .= al.

Series expansions of potential in interior and exterior regions:

Φint(r, θ) =
∞∑
l=0

al

( r
R

)l
Pl(cos θ) : r ≤ R, (10)

Φext(r, θ) =
∞∑
l=0

al

(
R

r

)l+1

Pl(cos θ) : r ≥ R. (11)

Dirichlet boundary conditions at r = R: Φ(R, θ) = Φ0(θ).

Their implementation uses the expansions (10), (11) and the orthogonality
of Legendre polynomials: :[lam16]

∫ π

0

dθ sin θ Pl(cos θ)Pl′(cos θ) =
2

2l + 1
δll′ ,
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The expansion coefficients follow directly:

Φ0(θ) =
∞∑
l=0

alPl(cos θ),

∫ π

0

dθ sin θPl′(cos θ)Φ0(θ) =
∞∑
l=0

al

∫ π

0

dθ sin θPl′(cos θ)Pl(cos θ)︸ ︷︷ ︸
2

2l + 1
δll′

.

⇒ al =
2l + 1

2

∫ π

0

dθ sin θ Pl(cos θ)Φ0(θ).

Neumann boundary conditions at r = R: −
[
∂Φext

∂r
− ∂Φint

∂r

]
r=R

=
σ0(θ)

ε0
.

Their implementation again uses the expansions (10), (11), and the orthog-
onality of Legendre polynomials:

∂Φext

∂r

∣∣∣
R

= − 1

R

∞∑
l=0

(l + 1)alPl(cos θ),
∂Φint

∂r

∣∣∣
R

=
1

R

∞∑
l=0

lalPl(cos θ).

⇒ σ0(θ)

ε0
= −

[
∂Φext

∂r
− ∂Φint

∂r

]
r=R

=
1

R

∞∑
l=0

(2l + 1)alPl(cos θ),

∫ π

0

dθ sin θ
σ0(θ)

ε0
Pl′(cos θ) =

1

R

∞∑
l=0

(2l + 1)al

∫ π

0

dθPl′(cos θ)Pl(cos θ)︸ ︷︷ ︸
2

2l + 1
δll′

.

⇒ al =
R

2ε0

∫ π

0

dθ sin θ Pl(cos θ)σ0(θ).

The case of surface charge density, σ0(θ) = σ0 cos θ, on the spherical shell
represents an electric dipole. The exterior potential and field are those of an
electric dipole. The interior electric field is uniform.

Two applications are found in the exercises. Legendre polynomials also fature [lex22][lex23]

prominently in an off-center expansion of the Coulomb potential. [lex24]
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Separable solutions in cylindrical coordinates:

Here again we elaborate on the more playful tinkering with the Laplace equa-
tion in cylindrical coordinates undertaken in the previous module.

[lln6] We only consider situations with continuous translational symmetry along
the z-axis. The (more complex) analysis of the general case is discussed in
the additional materials.[lam14]

Electric potentials for applications with translational symmetry: Φ(r, φ).

Laplace equation (for this case):

r
∂

∂r

(
r
∂Φ

∂r

)
+
∂2Φ

∂φ2
= 0. (12)

[gmd2-A]

Product ansatz: Φ(r, φ)
.
= R(r)Ψ(φ).

Substitute product ansatz for Φ(r, φ) into Laplace equation and divide Φ(r, φ).
These operations separate the two variables:

r

R

d

dr

(
r
dR

dr

)
+

1

Ψ

d2Ψ

dφ2
= 0.

The first term is a function of r and the second a function φ. The equation
can only hold if they are constants, equal in magnitude and opposite in sign.

Judicious choice of separation constant: ν2

The separation reduces the PDE to a pair of 2nd-order ODEs.

General solution for ν = 0:

B
r

R

d

dr

(
r
dR

dr

)
= 0 ⇒ R(r) = a ln r + b,

B
1

Ψ

d2Ψ

dφ2
= 0 ⇒ Ψ(φ) = c φ+ d.

General solution for ν 6= 0:

B
r

R

d

dr

(
r
dR

dr

)
− ν2 = 0 ⇒ R(r) = arν + br−ν ,

B
1

Ψ

d2Ψ

dφ2
+ ν2 = 0 ⇒ Ψ(φ) = c cos(νφ) + d sin(νφ).

Each general solution features two integration constants and, for ν 6= 0, the
value of the separation constant.
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Azimuthically periodic solutions of the Laplace equation (12) require that
the separation constant is integer-valued: ν = n ∈ Z.

Φ(r, φ) = a ln r + b+
∞∑
n=1

[
anr

n + bnr
−n][cn cos(nφ) + dn sin(nφ)

]
. (13)

The first two terms of (13) represent the the electric potential of a uniformly
charged rod of infinite length as discussed in an earlier module:[lln5]

Φ(r) = a ln r + b = a ln

(
r

r0

)
. (14)

For applications of the remaining terms in (13), consider situations of zero
net charge overall. Boundary conditions are specified on a cylinder radius R.
The potential must vanish at infinite radius.
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The set of coefficients is reduced as we impose the following three conditions:

B Non-divergent Φ at r < R (interior region) requires that b
(int)
n = 0.

B Vanishing Φ for r →∞ (exterior region) requires that a
(ext)
n = 0.

B Continuity of Φ at r = R requires matching expansion coefficients in
both regions: a

(int)
n Rn = b

(ext)
n R−n.

Series expansions of potential in interior and exterior regions:

Φint(r, φ) =
∞∑
n=1

( r
R

)n [
cn cos(nφ) + dn sin(nφ)

]
: r ≤ R, (15)

Φext(r, φ) =
∞∑
n=1

(
R

r

)n [
cn cos(nφ) + dn sin(nφ)

]
: r ≥ R. (16)
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Dirichlet boundary conditions at r = R: Φ(R, φ) = Φ0(φ).

[lex25]

Their implementation uses the expansions (15), (16) evaluated at r = R, and
the orthogonality of sines and cosines:

Φ0(θ) =
∞∑
n=1

[
cn cos(nφ) + dn sin(nφ)

]
,

∫ 2π

0

dφ cos(nφ) cos(n′φ) =

∫ 2π

0

dφ sin(nφ) sin(n′φ) = π δnn′ ,∫ 2π

0

dφ cos(nφ) sin(n′φ) = 0,

⇒ cn =
1

π

∫ 2π

0

dφ cos(nφ)Φ0(φ), dn =
1

π

∫ 2π

0

dφ sin(nφ)Φ0(φ).

Neumann boundary conditions at r = R: −
[
∂Φext

∂r
− ∂Φint

∂r

]
r=R

=
σ0(φ)

ε0
.

Their implementation uses partial derivatives of the expansions (15), (16)
evaluated at r = R, and the orthogonality of sines and cosines:

σ0(θ)

ε0
=

1

R

∞∑
n=1

2n
[
cn cos(nφ) + dn sin(nφ)

]
,

∫ 2π

0

dφ cos(nφ) cos(n′φ) =

∫ 2π

0

dφ sin(nφ) sin(n′φ) = π δnn′ ,∫ 2π

0

dφ cos(nφ) sin(n′φ) = 0,

⇒ cn =
R

2nπε0

∫ 2π

0

dφ cos(nφ)σ0(φ), dn =
R

2nπε0

∫ 2π

0

dφ sin(nφ)σ0(φ).
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Special case for which the series expansion terminates naturally:

B Neumann boundary condition: σ0(φ) = σ0 cosφ : r = R.

B Sole non-vanishing expansion coefficient:

c1 =
Rσ0
2πε0

∫ 2π

0

dφ cos2 φ︸ ︷︷ ︸
π

=
Rσ0
2ε0

.

B Electric potential in interior and exterior regions:

Φint(r, φ) =
σ0
2ε0

r cosφ =
σ0
2ε0

x, Φext(r, φ) =
σ0R

2

2ε0r
cosφ.

B Uniform electric field in interior region:

Eint = −∇Φint = − σ0
2ε0

î.

A nonzero net charge on the cylinder requires that we add the term (14) with
logarithmic r-dependence to the potential.
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Solutions of the Laplace equation from conjugate functions:

Here we consider situations with continuous translational symmetry perpen-
dicular to the xy-plane and use elements of complex analysis.

Electric potential: Φ(x, y).

Laplace equation:
∂2Φ

∂x2
+
∂2Φ

∂y2
= 0.

Cartesian coordinates: x, y.

Complex coordinate and its conjugate: z = x+ ıy, z̄ = x− ıy.

Consider two differentiable real functions: g(x, y), h(x, y).

From any pair of such functions a complex function can be constructed:

F (z, z̄) = g(x, y) + ıh(x, y) = <[F (z, z̄)] + ı=[F (z, z̄)].

A complex functions is analytic (complex differentiable) if its real part g(x, y)
and and its imaginary part h(x, y) satisfy the Cauchy-Riemann conditions,[gmd7-A]

∂g

∂x
=
∂h

∂y
,

∂g

∂y
= −∂h

∂x
. (17)

The functions g and h are then named conjugate functions and the analytic
function can be expressed as F (z) (a function of z alone).

In consequence, the real and imaginary parts of F (z) are harmonic functions.
They satisfy the Laplace equation separately:

∂2g

∂x2
+
∂2g

∂y2
= 0,

∂2h

∂x2
+
∂2h

∂y2
= 0. (18)

Significance for electrostatics:

– Pick an analytic function F (z) such that either <[F (z)] or =[F (z)]
satisfies the Dirichlet boundary conditions of an electrostatic situation
which calls for a solution Φ(x, y) of the Laplace equation.

– Given (18), the conjugate function which does satisfy the boundary
conditions is the solution sought: Φ(x, y) = g(x, y) or Φ(x, y) = h(x, y).

– The conjugate function which does not satisfy the boundary conditions
has a physically significant role as well: the lines h(x, y) = const or
g(x, y) = const are electrostatic field lines.[gmd7-A]
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Application to charged plane surface:

Consider a plane surface with charge density σ on yz-plane as shown.

Analytic function: F (z) = cz = cx+ ıcy.

Real and imaginary parts: g = cx, h = cy.

Cauchy-Riemann conditions:
∂g

∂x
=
∂h

∂y
= c,

∂g

∂y
= −∂h

∂x
= 0.

Harmonic functions:
∂2g

∂x2
+
∂2g

∂y2
= 0,

∂2h

∂x2
+
∂2h

∂y2
= 0.

Dirichlet boundary condition: Φ(0, y) = const.

Equipotential lines: g = const ⇒ x = const (solid lines).

Field lines: h = const ⇒ y = const (dashed lines).

Electric field: E =
σ

ε0
î = −∇Φ.

Electric potential: Φ = − σ
ε0
x.
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Further applications which employ Cartesian coordinates are found in the
exercises. [lex26][lex27]

[lex28]
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Application to charged cylindrical surface:

Consider a cylindrical surface of radius r0 centered around z-axis with charge
density σ as shown in cross section.

Analytic function: F (z) = c ln z = c ln r + ıcφ, z = reıφ.

Real part: g = c ln r, r =
√
x2 + y2.

Imaginary part: h = cφ, φ = arctan
y

x
.

Checking Cauchy-Riemann conditions ensures that g(x, y) nad h(x, y) are
harmonic functions (solutions of the Laplace equation):

∂g

∂x
=
dg

dr

∂r

∂x
=

cx

x2 + y2
,

∂h

∂y
=
dh

dφ

∂φ

∂y
=

cx

x2 + y2
.

∂g

∂y
=
dg

dr

∂r

∂y
=

cy

x2 + y2
,

∂h

∂x
=
dh

dφ

∂φ

∂x
= − cy

x2 + y2
.

Equipotential lines: g = const ⇒ r = const (concentric circles).

Field lines: h = const ⇒ φ = const (radial lines).

Electric potential: Φ = Φ0 ln(r/r0).

Electric field: E = −∇Φ = −Φ0

r
r̂ =

λ

2πε0r
r̂ =

σr0
ε0r

r̂, λ
.
= 2πr0σ.

Field strength at r = r0: E0 =
σ

ε0
= −Φ0

r0
⇒ Φ0 = −σr0

ε0
.
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