
Electrostatics I [lln5]

Coulomb force between point charges:

Consider point charges q1, q2, . . . fixed to positions x1,x2, . . . Point charges
are idealizations of charged particles.

Coulomb force: F1 =
q1q2

4πε0

x1 − x2

|x1 − x2|3
(exerted on q1 by q2).

Coulomb’s law expresses the interaction force between two point charges.
Interaction forces come in action-reaction pairs: F2 = −F1.

Permittivity constant: ε0 = 8.854× 10−12C2N−1m−2.

Superposition principle: Interaction forces between point charges at rest are
(vectorially) additive.

Force on point charge q at position x exerted by charges qk at positions xk:

Fq =
∑
k

qqk
4πε0

x− xk
|x− xk|3

, (1)

Alternative notation using unit vectors and magnitudes:

rk
.
= x− xk, rk

.
= |rk|, r̂k

.
=

rk
rk
, Fq =

∑
k

qqk
4πε0

r̂k
r2
k

[lex187][lex218]
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Instantaneous forces over distance are problematic. An alternative descrip-
tion of the Coulomb force facilitates the generalization to situations with
moving charges.
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Coulomb force mediated by electric field:

Point charges qk fixed to positions xk (source points) generate a static (time-
independent) electric field E(x) at arbitrary field points x:

E(x) =
∑
k

qk
4πε0

x− xk
|x− xk|3

. (2)

A point charge q placed at position x experiences a force exerted by the local
electric field:

F = qE(x). (3)

[lex39][lex128]
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The force law (3) holds generally, even when charges are in motion, but an
additional (magnetic) force comes into play.

Expression (2) for the electric forces can be generalized to situation with
moving charges in the form of Gauss’s law for the electric field.

Expression (1) for Coulomb interaction forces is restricted to electrostatics.

The notion that electric fields are generated by electric charges is only useful
in electrostatics. Electrodynamics presents ways of generating an electric
field which do not involve electric charges.

Electric charges are said to be a source of electric fields, which must be
understood with this proviso. Electric fields interact with electric charges
present in a region of space.
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Charge densities:

Electric charge in ordinary matter is carried by electrons and protons in
(discrete, negative or positive) units of the elementary charge,

e = 1.602× 10−19C.

For many purposes, it is justified and quite accurate to represent electric
charge by a volume charge density ρ(x), which averages the distribution of
(discrete) electric charge over distances significantly larger than atomic radii.

Continuum limit of electric-field expression (2):

E(x) =
1

4πε0

∫
V

d3x′ρ(x′)
x− x′

|x− x′|3
. (4)

If electric charge is distributed over a region in space which is effectively two-
dimensional (e.g. a plane sheet or a thin spherical shell) or one-dimensional
(e.g. a rod or a ring), such distributions are specified by a surface charge
density σ(x′) or a line charge density λ(x′), respectively. [lex1]-[lex8]
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In many applications, it is easy to adapt expression (4) to a two-dimensional
integral across a surface S involving σ(x′) or a one-dimensional integral along
a curve C involving λ(x′).

E(x) =
1

4πε0

∫
S

da′ σ(x′)
x− x′

|x− x′|3
, E(x) =

1

4πε0

∫
C

dl′ λ(x′)
x− x′

|x− x′|3
.
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Electric potential:

[gmd1-A]

Mathematical identity: ∇
(

1

|x− x′|

)
= − x− x′

|x− x′|3
.

Application to electrostatic field (4):

E(x) =
1

4πε0

∫
d3x′ρ(x′)

x− x′

|x− x′|3
= −∇ 1

4πε0

∫
d3x′

ρ(x′)

|x− x′|︸ ︷︷ ︸
Φ(x)

= −∇Φ(x).

Electric potential:

Φ(x) =
1

4πε0

∫
d3x′

ρ(x′)

|x− x′|
. (5)

[lex42][lex192]

Expression for discrete charges:

Φ(x) =
1

4πε0

∑
k

qk
|x− xk|

.

Mathematically, E(x) is a vector field and Φ(x) a scalar field. In general,
scalar fields are more user-friendly than vector fields.

Electrostatic field is irrotational: ∇× E(x) = ∇×
[
−∇Φ(x)

]
= 0.[gmd1-A]

Relation between electrostatic field and electric potential: [lex40]

E(x) = −∇Φ(x), Φ(x) = Φ(x0)−
∫ x

x0

dx′ · E(x′). (6)

The attribute ∇×E = 0 guarantees that the integral is path-independent –
a consequence of Stokes’ theorem.[gmd1-B]

Gauss’s law for the electric field:

Mathematical identity: ∇2

(
1

|x− x′|

)
= −4πδ(x− x′).

Application to electric potential (5) yields ...

Poisson equation: −∇2Φ(x) =
ρ(x)

ε0
[∇2Φ = ∇ · (∇Φ) = −∇ · E].

Gauss’s law: ∇ · E(x) =
ρ(x)

ε0
(differential version).

Gauss’s law is more general than Coulomb’s law. Gauss’s law remains valid
when charges are in motion, i.e. in electrodynamics.
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Electric flux:

Consider a surface S of arbitrary shape divided into infinitesimal elements
of area da, represented as vectors da directed perpendicular to the surface.

For open surfaces, one of two directions is chosen. For closed surfaces the
convention is that da points toward the outside.

da
clo.

S opt t.t 3 crosen

Electric flux through an arbitrary surface S:1 ΦE
.
=

∫
S

da · E.

Application of Gauss’s theorem and the differential version of Gauss’s law:∮
S

da · E =

∫
V

d3x ∇ · E(x)︸ ︷︷ ︸
ρ(x)/ε0

=
1

ε0

∫
V

d3x ρ(x)︸ ︷︷ ︸
Qin

.

Gauss’s law:

∮
S

da · E =
Qin

ε0
(integral version).

The electric flux through a closed surface of any shape is related to the net
charge Qin inside, irrespective of motion and the presence of charges outside.[lex41]

JE-
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The flux contribution from an element of area da is positive, zero, or negative,
depending on whether the angle between the vectors E and da is smaller than,
equal to, or larger than 90◦, respectively. [lex37][lex38]

1Note that the same Greek symbol is being used for electric potential Φ(x), for electric
flux ΦE , and (later) for magnetic flux ΦB .
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Electrostatic field at surfaces and interfaces:

How does the electrostatic field E change across the surface of a material or,
more generally, across the interface between two materials? The answers for
the tangential and normal components are obtained via different reasoning.

B The tangential part E‖ of the electric field is continuous across the in-
terface.

This follows from the electrostatic condition, ∇ × E = 0, and Stokes’
theorem applied to a flat rectangular loop with the long sides parallel
to the interface on opposite sides and surrounding the open surface So.

[gmd1-B] ∮
C

dl · E =

∫
So

da · ∇ × E︸ ︷︷ ︸
0

= 0
dz→0⇒ ∆E‖ = 0.

B The normal part E⊥ of the electric field has a discontinuity in the
amount of |∆E⊥| = |σ|/ε0 across the interface, where σ is the (lo-
cal) surface charge density on the interface.

This follows from Gauss’s theorem and Gauss’s law applied to a short
pill box positioned across the interface with the two flat surfaces parallel
to the interface and cutting out a patch Sp of the interface.∮

Sc

da · E =

∫
V

d3x∇ · E =

∫
V

d3x
ρ(x)

ε0
=

1

ε0

∫
Sp

d2xσ(x)︸ ︷︷ ︸
Qin

dz→0⇒
∫
Sp

d2x|∆Ez| =
1

ε0

∫
Sp

d2xσ(x) ⇒ |∆E⊥| =
|σ|
ε0
.

If σ > 0 (σ < 0) then the larger E⊥ is pointing away from (toward) the
interface.
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Electrostatic field determined via Gauss’s law:

Gauss’s law (integral version) can be used for the calculation of the electro-
static field of charged objects if specific symmetry conditions are satisfied.

B Spherical symmetry : Spherical coordinates r, θ, φ are in use. A charge
distribution with full spherical symmetry, ρ(r), generates an electric
field in radial direction, E = E(r)r̂. We use Gaussian surfaces of
spherical shape.

The electric flux, ΦE, is the product of the (unknown) electric field at
radius r and the area, 4πr2, of the Gaussian sphere. Gauss’s law relates
the electric flux through the Gaussian sphere to the (known) net charge
inside: [lex46]

ΦE = 4πr2E(r) =
1

ε0

∫ r

0

dr′(4πr′2)ρ(r′) =
Qin

ε0
.
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B Cylindrical symmetry : Cylindrical coordinates r, φ, z are in use. A
charge distribution with azimuthal and translational symmetry, ρ(r),
generates an electric field in radial direction, E = E(r)r̂. We use Gaus-
sian surfaces of cylindrical shape.

The electric flux, ΦE, is the product of the (unknown) electric field at
radius r and the area, 2πrl, of the curved part of the Gaussian cylinder.
The two flat portions of the Gaussian cylinder do not contribute electric
flux of the radial field. Gauss’s law relates the electric flux through the
Gaussian cylinder to the (known) net charge inside: [lex47]

ΦE = 2πrlE(r) =
1

ε0

∫ r

0

dr′(2πr′l)ρ(r′) =
Qin

ε0
.
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B Planar symmetry : Cartesian coordinates x, y, z are in use. A charge
distribution with planar symmetry, ρ(z) at |z| ≤ z0, generates an elec-
tric field in z-direction. We use a Gaussian surface in the shape of a
box placed as shown.

The electric flux, ΦE, is the sum of the products of the (unknown)
field E at positions ±z0 with the area vectors A of the top or bottom
sides of the box. The sides of the box perpendicular to the xy-plane
do not contribute electric flux of the vertical field. Gauss’s law relates
the electric flux through the Gaussian box to the net charge inside: [lex189]

ΦE = A
[
Ez(z0)− Ez(−z0)

]
= 2AEz(z0) =

A

ε0

∫ +z0

−z0
dz′ρ(z′) =

Qin

ε0
.

The relation Ez(−z0) = −Ez(z0) holds for arbitrary ρ(z′) at |z′| ≤ z0.
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Alternatively, we can take advantage of the fact that uniformly charged
plane sheets generate uniform electric fields on either side:

Ez(z) =
1

2ε0

∫ z0

−z0
dz′ρ(z′)sgn(z − z′).
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Electrostatic energy:

If a region of space contains an electrostatic field E(x), it also contains an
electric potential Φ(x). The two attributes of space are related to each other
via (6).

A particle with charge q placed at position x experiences the force F = qE(x)
and has the potential energy U = qΦ(x).

In electrostatics, the source of the electric field E(x) and the electric potential
Φ(x) are other electric charges already positioned in space.

The table illustrates a particular case: one particle with charge Q is the
source and another particle with charge q experiences field and potential
generated by that source.

attribute of SI unit

field space E(x) =
1

4πε0

Q

|x− xQ|2
r̂ [N/C]=[V/m]

potential space Φ(x) =
1

4πε0

Q

|x− xQ|
[V]=[J/C]

force particle F = qE(xq) =
1

4πε0

Qq

|xq − xQ|2
r̂ [N]

energy particle U = qΦ(xq) =
1

4πε0

Qq

|xq − xQ|
[J]

The unit vector r̂ always points away from the source.
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The roles of the two particles are interchangeable. The force F represents
an action-reaction pair. The energy U can be interpreted as the interaction
potential energy of two charged particles.
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Potential interaction energy of a discrete charge distribution:

Uint =
1

4πε0

∑
i<j

qiqj
|xi − xj|

=
1

2

1

4πε0

∑
i 6=j

qiqj
|xi − xj|

. (7)

If we successively place three charges q1, q2, q3 into a region of space, the first
charge experiences no potential, the second charge experiences the potential
of the first charge, and the third charge experiences the potential of the first
two charges. The total interaction potential energy thus calculated,

Uint = 0 +
1

4πε0

q1q2

|x1 − x2|
+

1

4πε0

[
q1q3

|x1 − x3|
+

q2q3

|x2 − x3|

]
,

is equivalent to the general expression (7).

Potential energy of a continuous charge distribution ρ(x):

U =
1

2

1

4πε0

∫
d3x

∫
d3x′

ρ(x)ρ(x′)

|x− x′|
=

1

2

∫
d3xρ(x)Φ(x), (8)

where the electric potential (5),

Φ(x) =
1

4πε0

∫
d3x′

ρ(x′)

|x− x′|
,

is generated by the same charge distribution ρ(x).

Z

I
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x

Expression (7) and (8) are not equivalent. The latter includes, in addition
to the interaction potential energy, also the potential self-energy. [lex120]
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The inequivalence becomes more transparent after a transformation of the
integrand in expression (8):

ρ(x)Φ(x)
(a)
= −ε0

[
∇2Φ(x)

]
Φ(x)

(b)
= ε0

[
∇Φ(x)

]2︸ ︷︷ ︸
(c)

−ε0∇ ·
[
Φ(x)∇Φ(x)

]︸ ︷︷ ︸
(d)

.

(a) Use the Poisson equation, −∇2Φ(x) = ρ(x)/ε0.

(b) Use the mathematical identity, ∇ · (gF) = g∇ · F +∇g · F.[gmd1-B]

Set g
.
= Φ and F

.
= ∇Φ ⇒ ∇ · (Φ∇Φ) = Φ∇2Φ + (∇Φ)2.

(c) Use E(x) = −∇Φ(x).

(d) This term vanishes upon integration by virtue of Gauss’s theorem if
the surface is moved out to infinity, where the potential vanishes:∫

d3x∇ ·
[
Φ(x)∇Φ(x)

]
=

∮
S

da · Φ(x)∇Φ(x) 0,

Electrostatic potential energy:

⇒ U =
1

2

∫
d3xρ(x)Φ(x) =

1

2
ε0

∫
d3x|E(x)|2 ≥ 0. (9)

The interaction potential energy Uint can be positive or negative. The total
electrostatic energy U cannot be negative. It contains interaction energy and
self-energy.

The electrostatic self-energy of point charges is infinite. This has been a
lingering challenge in classical and quantum field theory.

Differential relations versus integral relations:

Local quantities:

ρ(x) [C/m3], E(x) [V/m], Φ(x) [V].

Differential relations:

ρ(x) = ε0∇ · E(x), ρ(x) = −ε0∇2Φ(x), E(x) = −∇Φ(x).

Integral relations:

E(x) =
1

4πε0

∫
d3x′ρ(x′)

x− x′

|x− x′|3
, Φ(x) =

1

4πε0

∫
d3x′

ρ(x′)

|x− x′|
,

Φ(x) = Φ(x0)−
∫ x

x0

dx′ · E(x′).
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Electrostatic force on extended charged objects:

Consider a region of electrostatic field Eext(x) generated by unspecified sources.

Force on charged particle in this electric field: F = qEext(x). Does the
electric field generated by the particle itself not contribute?

Consider instead an extended charged object with charge density ρ(x).

Total electric field: E(x) = Eext(x) + Eself(x).

Force exerted by external field: Fext =

∫
d3xρ(x)Eext(x).

Electric field generated by the charged object:

Eself(x) = −∇Φself = −∇ 1

4πε0

∫
d3x′

ρ(x′)

|x− x′|
=

1

4πε0

∫
d3x′ρ(x′)

x− x′

|x− x′|3
.

Force exerted by the field generated by the charged object itself:

Fself =

∫
d3xρ(x)Eself(x) =

1

4πε0

∫
d3x

∫
d3x′

ρ(x)ρ(x′)

|x− x′|3
(x− x′) = 0.

Note the antisymmetry of the integrand. The same conclusion holds for the
charged particle.

Interaction energy and self-energy for extended charged objects:

Consider a continuous charge distribution in two parts, which may be spa-
tially separated or overlapping:

ρ(x) = ρ1(x) + ρ2(x).

The solution of the (linear) Poisson equation yields the electric potential in
two parts and its (linear) gradient the electric field in two parts:

−∇2Φ =
ρ

ε0
⇒ Φ(x) = Φ1(x)+Φ2(x) ⇒ −∇Φ = E(x) = E1(x)+E2(x).

The potential energy associated with this charge configuration has three
parts: two self-energies and one interaction energy:

U =
1

2
ε

∫
d3x|E1(x) + E2(x)|2

=
ε0
2

∫
d3x|E1(x)|2︸ ︷︷ ︸
U

(1)
self

+
ε0
2

∫
d3x|E2(x)|2︸ ︷︷ ︸
U

(2)
self

+ ε0

∫
d3x|E1(x) · E2(x)|︸ ︷︷ ︸

Uint

.
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The transformation of the three terms employs steps used earlier:

U
(1)
self =

1

2

∫
d3xρ1(x)Φ1(x), U

(2)
self =

1

2

∫
d3xρ2(x)Φ2(x),

Uint =

∫
d3xρ1(x)Φ2(x) =

∫
d3xρ2(x)Φ1(x).

Multipole expansion:

Electric potential of two point charges: Φ(x) =
1

4πε0

∑
k=1,2

qk
|x− xk|

.

Triangle spanned by the two vectors x and xk at angle θk has sides,

r
.
= |x|, rk

.
= |xk|, |x− xk| =

√
r2 − 2rrk cos θk + r2

k.

z"

+')
x -x.kx

rb

x
l^

9r.

Y

X

⇒ 1

|x− xk|
=

1√
r2 − 2rkr cos θk + r2

k

=
1

r

1√
1 + κ

, κ
.
=
r2
k − 2rkr cos θk

r2
.

Binomial expansion:
1√

1 + κ
= 1− 1

2
κ+

3

8
κ2 + . . .

Unit vector: r̂
.
=

x

r
⇒ r̂ · xk = rk cos θk.

⇒ 1

r

1√
1 + κ

=
1

r

[
1− 1

2

r2
k − 2rrk cos θk

r2
+

3

8

(r2
k − 2rrk cos θk)

2

r4
+ · · ·

]
=

1

r
+
rk cos θk
r2

− 1

2

r2
k

r3
+

3

2

(rk cos θk)
2

r3
+ · · ·
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⇒ 1

|x− xk|
=

1

r
+

r̂ · xk
r2

+
3(r̂ · xk)2 − r2

k

2r3
+ O

(
r−4
)
.

Electric potential of two point charges:

Φ(x) =
1

4πε0

[
q1

|x− x1|
+

q2

|x− x2|

]
=

1

4πε0

[
Q

r
+

r̂ · p
r2

+
r̂ · Q · r̂
r3

+ . . .

]
.

B Monopole: Q = q1 + q2 (scalar).

B Dipole: p = q1x1 + q2x2 (vector).

B Quadrupole: Q =
q1

2

[
3x1x1 − r2

1I
]

+
q2

2

[
3x2x2 − r2

2I
]

(tensor).

Mathematically, the multipole expansion of the electric potential involves
multipole moments Qn in the form of tensors of rank 0 (Q0 = Q, scalar),
rank 1 (Q1 = p, vector), rank 2 (Q2 = Q), and higher.

The dyadic product xx is a tensor of rank 2, as is the unit tensor I:

xx =

 xx xy xz
yx yy yz
zx zy zz

 , I =

 1 0 0
0 1 0
0 0 1

 .

Tensors of rank n have n indices.

Dot products between tensors are contractions, resulting in a reduction of
tensor rank. All terms in the expansion of Φ(x) are scalars. In the second
term we have a contraction of the rank-1 tensor p and in the third term two
contractions of the rank-2 tensor Q.

Electric multipole moments of discrete and continuous charge distributions:

B Monopole: Q =
∑
k

qk, Q =

∫
d3x ρ(x).

B Dipole: p =
∑
k

qkxk, p =

∫
d3x ρ(x) x. [lex9][lex188]

B Quadrupole: Q =
∑
k

qk
2

(
3xkxk − r2

kI
)
, Q =

∫
d3x ρ(x)

1

2

(
3xx− r2I

)
.
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Torque and force on electric dipole:

Torque N acting on electric dipole p in electric field E:

N =

∫
d3x ρ(x)x× E(x)

(a)
 p× E,

- force acting on charge element: dF = E(x)ρ(x)d3x,

- torque acting on charge element: dN = x× dF,

- assumption (a): E varies negligibly across volume occupied by dipole.

Z

9(i) Jx

E
x

Y

X

Potential energy U(x) of electric dipole p in electric field E(x):

U =

∫
d3x′ρ(x′)Φ(x′)

(b)
=

∫
d3x′ρ(x′)x′ · ∇Φ(x) = −p · E(x),

- step (b) uses Φ(x′) ' Φ(x) + (x′ − x) · ∇Φ(x),

- step (b) also uses

∫
d3x′ρ(x′) = 0 (zero net charge).

Force F acting on electric dipole p in electric field E: [lex195][lex197]

F(x) = −∇U(x) = ∇[p · E(x)]
(c)
= (p · ∇)E(x),

- step (c) uses ∇× E(x) = 0,

- step (c) uses p = const (not position-dependent),

- step (c) uses mathematical identity:

∇(p · E) = p× (∇× E)︸ ︷︷ ︸
0

+E× (∇× p)︸ ︷︷ ︸
0

+(p · ∇)E + (E · ∇)p︸ ︷︷ ︸
0

,[gmd1-A]
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