
Quantum Optics III [lln27]

Resonant light-atom interactions:

Light induces electric dipole oscillations in atoms, which then radiate at the
same frequency. Circumstances favorable to enhanced interactions due to
matching attributes are named resonance.

Here we investigate what happens when an atom is irradiated with a light
beam in resonance with a particular electronic level spacing.

The focus is on a two-level system: E2 > E1, E2 − E1 = ~ω.

The pair of resonant levels is considered in full detail. Other atomic levels
are accounted for summarily as a source of damping.

Questions of interest:

– What goes on in an atom during the absorption process?

– What is spontaneous emission really? Is it a random process as assumed
by Einstein’s theory or is it stimulated by vacuum fluctuations?

Pure versus mixed quantum states:

Consider a physical ensemble of N noninteracting two levels systems: eigen-
states |1〉, |2〉 with energies E1, E2, respectively.

– A member of the ensemble is said to be in a pure state if it is a coherent
superposition of eigenstates: |ψ〉 = c1|1〉 + c2|2〉. This includes the
stationary states |1〉 (if c2 = 0) and |2〉 (if c1 = 0).

– The ensemble with all N members in a stationary state is said to be in
a mixed state with, say, N1 members in eigenstate |1〉 and N2 members
in eigenstate |2〉.

The difference between the two states is encoded in the density operator:

ρP =

(
c∗1c1 c1c

∗
2

c∗1c2 c2c
∗
2

)
, ρM =

(
|c1|2 0

0 |c2|2
)
.

If |c1|2 = N1/N and |c2|2 = N2/N , the probability of measuring the energy
E1 or E2 is the same for the pure state and the mixed state.

Stationary states have independent phases. The light links the phases be-
tween the two levels, causing transitions between them: absorption and stim-
ulated emission.
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Bloch sphere:

Coherent superposition states,

|ψ〉 = c1|1〉+ c2|2〉, |c1|2 + |c2|2 = 1,

can be represented by points on a unit sphere, named Bloch sphere, with the
stationary states |1〉 and |2〉 at the South Pole and North Pole, respectively.

x = sin θ cosϕ,

y = sin θ sinϕ,

z = cos θ.

x = 2<[c1c2],

y = 2=[c1c2],

z = |c2|2 − |c1|2.

m

c1 = sin
θ

2
, c2 = cos

θ

2
eıϕ.

12>

v

l1)

[image from Fox 2014]

The mixed ensemble state identified earlier would, by contrast, be represented
by a pointed on the axis connecting the poles of the Bloch sphere.

Schrödinger equation of interacting system:

Atomic two level system subject to interaction potential:

HΨ = ı~
∂Ψ

∂t
, H = H0 + V (r, t).

Nonstationary solution: Ψ(r, t) = c1(t)ψ1(r)e−ıE1t/~ + c2(t)ψ2(r)e−ıE2t/~.

Stationary states of H0: H0ψi(r) = Eiψi(r) : i = 1, 2.

Normalization:

∫
d3rψ∗i (r)ψj(r) = δij.

Resonance: ω0 = (E2 − E1)/~, ω = ω0 + δω, |δω| � ω0.
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Substitute ansatz for nonstationary solution into Schrödinger equation and
extract contribution due to interaction potential V (r, t):[

H0 + V
][
c1ψ1e

−ıE1t/~ + c2ψ2e
−ıE2t/~

]
= ı~

{[
ċ1 −

ıE1c1

~

]
e−ıE1t/~ +

[
ċ2 −

ıE2c2

~

]
e−ıE2t/~

}
H0

[
c1ψ1e

−ıE1t/~ + c2ψ2e
−ıE2t/~

]
= c1E1ψ1e

−ıE1t/~ + c2E2ψ2e
−ıE2t/~.

⇒ V
[
c1ψ1e

−ıE1t/~ + c2ψ2e
−ıE2t/~

]
= ı~

{
ċ1ψ1e

−ıE1t/~ + ċ2ψ2e
−ıE2t/~

}
.

Use normalization of stationary states to infer coupled linear first-order ODEs
for the coefficients of the nonstationary solution:

ċ1(t) = − ı
~
[
c1(t)V11(t) + c2(t)V12(t)e−ıω0t

]
,

ċ2(t) = − ı
~
[
c1(t)V21(t)eıω0t + c2(t)V22(t)

]
,

Interaction matrix elements: Vij(t)
.
=

∫
d3r ψ∗i (r)V (r, t)ψj(r).

Electric dipolar interaction (E1) dominates: V (r, t) = er · E(t).

Linearly polarized light: V (r, t) = exE0 cos(ωt) =
exE0

2

[
eıωt + e−ıωt

]
.

⇒ Vij(t) =
eE0

2

[
eıωt + e−ıωt

] ∫
d3r ψ∗i (r)xψj(r) = −1

2
E0µij

[
eıωt + e−ıωt

]
.

Electric-dipole matrix elements: µij = −e
∫
d3r ψ∗i (r)xψj(r).

Odd parity of operator requires that µ11 = µ22 = 0, µ12 = µ21
.
= µ.

A nonzero µ requires that atomic states 1 and 2 have opposite parity.

Coupled ODEs for the this particular interaction:

ċ1(t) =
ı

2
ΩR

[
eı(ω−ω0)t + e−ı(ω+ω0)t

]
c2(t),

ċ2(t) =
ı

2
ΩR

[
e−ı(ω−ω0)t + eı(ω+ω0)t

]
c1(t), (1)

Rabi (angular) frequency: ΩR =

∣∣∣∣µE0

~

∣∣∣∣.
Near resonance the first factor inside the square bracket is a slow oscillation
and the second factor a fast oscillation.
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Einstein coefficients in the weak-field limit:

The focus is on absorption processes under the assumption that the interac-
tion does not significantly affect the population of the lower level.

Weak-field assumption: ċ1(0) ' 0.

Initial conditions: c1(0) = 1, c2(0) = 0.

Near-resonance condition: δω
.
= ω − ω0 � ω0.

Reduction to single ODE: ċ2(t) =
ı

2
ΩR

[
e−ı(ω−ω0)t + eı(ω+ω0)t

]
.

⇒ c2(t) =
ı

2
ΩR

[
e−ıδωt − 1

−ıδω
+
eı(ω+ω0)t − 1

ı(ω + ω0)

]
δω�1−→ 1

2
ΩR

1− e−ıδωt

δω
.

The last step, which neglects fast low-amplitude oscillations, is named rotat-
ing wave approximation.

Raw weak-field absorption rate: |c2(t)|2 =
Ω2

R

4

sin2(δωt/2)

(δω/2)2
, ΩR =

∣∣∣∣µE0

~

∣∣∣∣.
A more realistic result averages over frequencies near resonance:1

|c2(t)|2 =
µ2E2

0

4~2

∫ ω0+∆ω/2

ω0−∆ω/2

dω
2u(ω)

ε0E2
0

sin2
(
(ω − ω0)t/2

)
(ω − ω0)2/4

' µ2u(ω0)

2ε0~2

∫ +∞

−∞
dω

(
sin(ωt/2)

ω/2

)2

︸ ︷︷ ︸
2πt

=
πµ2

ε0~2
u(ω0)t.

The linear time-dependence is indicative of a steady rate of absorption.

Einstein absorption coefficient [lln24]:
dN2

dt
= −dN1

dt
= B12u(ω0)N2.

Relation to transition rate:2 W12 = B12u(ω0) =
|c2(t)|2

3t
.

⇒ B12 =
πµ2

3ε0~2
.

The coefficients A21 and B21 for spontaneous and stimulated emissions, re-
spectively, can be inferred from B12 as described in [lln24].

1The rescaled spectral energy density must satisfy
∫
dωu(ω) = ε0E

2
0/2.

2The factor 1
3 is the result of directional averaging.
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Rabi oscillations in the strong-field limit:

Strong-field situations can be realized with light from powerful laser beams.
A simple solution of the coupled ODEs (1) can be found

– if we invoke the rotating-wave approximation (neglect fast oscillations),

– if the light drives the two-level system at resonance (ω = ω0).

Simplified coupled ODEs: ċ1(t) =
ı

2
ΩR c2(t), ċ2(t) =

ı

2
ΩR c1(t).

Separated ODEs: c̈1(t) = −1

4
Ω2

R c1(t), c̈2(t) = −1

4
Ω2

R c2(t).

Solutions with c1(0) = 1 and c2(0) = 0:

c1(t) = cos

(
ΩRt

2

)
, c2(t) = sin

(
ΩRt

2

)
, ΩR =

∣∣∣∣µE0

~

∣∣∣∣ .
Occupation probabilities of the two levels are subject to Rabi oscillations,
also named Rabi flopping :

|c1(t)|2 = cos2

(
ΩRt

2

)
, |c2(t)|2 = sin2

(
ΩRt

2

)
.

Laser light that is slightly off resonance affects both the period and the
amplitude of the Rabi oscillations [lex156]:

|c2(t)|2 =

(
ΩR

Ω

)2

sin2

(
Ωt

2

)
, Ω2 = Ω2

R + (δω)2.

The condition for persistent coherence, on which the observation of Rabi
oscillations depends, can be expressed by the inequality,

ΩR =

∣∣∣∣µE0

~

∣∣∣∣� 2π

τ
, (τ : radiative lifetime).

The causes for the damping of Rabi oscillations split into two parts:

– Decay of level population (longitudinal relaxation), characterized by
time constant T1. Spontaneous emission is a major contribution. The
radiative lifetime τ is an upper limit of T1. Nonradiative processes
cause a further reduction.

– Dephasing (transverse relaxation) is characterized by the time constant
T2. Dephasing is population conserving. Elastic collisions in gases or
phonon scattering in solids are major causes.
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Optical cavities:

The interaction between atoms and photons is enhanced if it takes place
inside a resonant cavity.

A planar cavity has a dielectric material between two parallel mirrors:

B L: adjustable separation between mirrors 1 and 2,

B n: refractive index of dielectric material,

B R1, R2: reflectivities of mirrors,

B λ: wavelength of incident light (from left).

j-L 2 T rlr
,na
'..-!

t
---)

ASFHr{x

#

(*- -t

o
zIY (r'*- t) t1f wl

I

)

In high-resolution spectroscopy, this is a Fabry-Perot interferometer.

– Cavity transmission: T =

[
1 +

(
2F
π

)2

sin2 φ

2

]−1

.

– Round-trip phase shift: φ = ωt = ω
2L

c/n
= 2nkL =

4πnL

λ
.

– Cavity finesse: F =
π(R1R2)1/4

1−
√
R1R2

.

– Resonance condition: φ = 2πm ⇒ L =
mλ

2n
: m = 1, 2, . . ..

– Transmission at resonance: T = 1.

– For high finesse (F � 1), the transmission T is sharply peaked at
points of resonance (see sketch).

– Full width at half maximum:

(
2F
π

)
sin

φ

2
= 1 ⇒ ∆φFWHM =

2π

F
.

– Resolving power: F =
2π

∆φFWHM

=
separation of peaks

FWHM of peak
.

– Resonant frequencies: ωm =
2πc

λ
=
mπc

nL
.
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Resonant light in the cavity is in phase. Waves interfere constructively, pro-
ducing large amplitudes.

Spectral width of resonant modes: Use ω ∝ φ and ωm − ωm−1 = πc/nL,

∆ω

ωm − ωm−1

=
∆φFWHM

2π
=

1

F
⇒ ∆ω =

πc

nFL
.

Cavity lifetime of photons: Use R1 = R2
.
= R.

dN

dt
=

∆N

∆t
= −N(1−R)

nL/c
⇒ N(t) = N0e

−t/τcav , τcav =
nL

c(1−R)
.

N(1 − R) is the loss during each mirror reflection and nL/c is the time
between reflections.

Cavity photon loss rate at high-reflectivity (R ' 1):

F ' π

1−R
, κ

.
=

1

τcav

=
c(1−R)

nL
' πc

nFL
= ∆ω.

Quality factor: Q
.
=

ω

∆ω
' ω

κ
.

The resonance condition is an attribute of the optical cavity alone, indepen-
dent of external irradiation. In the absence of photons of a resonant mode,
the cavity remains resonant for vacuum fluctuations of the same mode.

Two-level atom in optical cavity:

Consider a cavity tuned to resonate with a two-level atom at frequency ω.
The interaction at resonance is then governed by three parameters with units
s−1, thus representing different time scales:

– cavity photon loss rate κ,

– non-resonant atomic decay rate γ,

– atom-photon coupling strength g0.

It is useful to distinguish a weak-coupling regime, g0 � max(κ, γ), and a
strong-coupling regime, g0 � max(κ, γ).

In the strong-coupling regime, photons emitted by atoms are likely to be
re-absorbed before before they are lost from the cavity. In the weak-coupling
regime, re-absorption is unlikely.
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The photon loss rate κ is governed by the quality factor of the cavity:
κ = ω/Q. A high value of Q suppresses losses.

Contributions to the non-resonant decay rate γ include

– photons emitted at resonant frequency away from the direction of the
resonant mode,

– photons emitted at different frequencies,

– non-radiative atomic transitions.

For the determination of the coupling strength g0, we examine the interaction
energy between the two-level atom and the vacuum electric field in the cavity:

– Electric dipole interaction: ∆U = |µ12Evac|, µ12 = −e〈1|x|2〉.

– Vacuum electric field:3 2

∫
d3x

1

2
ε0E

2
vac =

1

2
~ω ⇒ Evac =

√
~ω

2ε0V0

.

– Measure for coupling strength: ∆U = ~g0 ⇒ g0 =

√
µ2

12ω

2ε0~V0

.

– For N atoms in a cavity, the strong-coupling condition requires that√
Ng0 � max(κ, γ). This condition is rarely met unless N is large.

Weak-coupling regime:

We focus on spontaneous photon emission, first in free space, then in a res-
onating cavity. Free space is represented here by a large volume VL.

– Fermi’s golden rule for transition rate:4 W =
2π

~2
|M12|2g(ω).

– Density of photon modes [lln24]: g(ω) =
ω2VL

π2c3
.

– Matrix element for electric-dipole (E1) interaction:5 M12 = 〈p · E〉.

⇒ |M12|2 =
1

3
µ2

12E
2
vac =

µ2
12~ω

6ε0VL

; Evac =

√
~ω

2ε0VL

, µ12 = −e〈1|x|2〉.

– Einstein coefficient for spontaneous emission: A21 = W =
µ2

12ω
3

3πε0~c3
.

3Evac thus defined represents the rms value.
4We have used f(ε)dε = g(ω)dω for ε = ~ω, from which f(ε) = g(ω)/~ follows.
5The factor 1

3 represents orientational averaging.
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Consistency with the previous result for the Einstein absorption coefficient,
B12 = πµ2

12/3ε0~2, is confirmed if we use the relations (for g1 = g2) between
the coefficients established in [lln24]:

A21 =
~ω3

π2c3
B21, B21 = B12.

Purcell effect:

The Purcell effect describes the change in the rate of spontaneous emission
from a two-level atom due to confinement in a single-model resonant cavity.

– Cavity resonance frequency: ωc.

– Quality factor determines linewidth ∆ωc: Q =
ωc

∆ωc

.

– Lorentzian lineshape [lln24]: g(ω) =
2

π∆ωc

(∆ωc)
2

4(ω − ωc)2 + (∆ωc)2
.

– Transition frequency of two-level atom: ω0 = (E2 − E1)/~.

– Resonance condition: ω0 = ωc, ⇒ g(ω0) =
2

π∆ωc

=
2Q

πω0

.

– Matrix element generalized: |M12|2 = ξ2µ2
12E

2
vac = ξ2µ

2
12~ωc

2ε0V0

.

– Cavity vacuum electric field: Evac =

√
~ω

2ε0V0

.

– Orientational factor: ξ
.
=
|p · E|
|p||E|

with ξ2 rand. orien.−→ 1
3
.

– Cavity transition rate: Wcav =
2Qµ2

12

~ε0V0

ξ2 (∆ωc)
2

4(ω0 − ωc)2 + (∆ωc)2︸ ︷︷ ︸
→1 at res.

.

– Purcell factor: FP
.
=
Wcav

W
=

6πQ

V0

c3

ω3
ξ2 (∆ωc)

2

4(ω0 − ωc)2 + (∆ωc)2
.

– Change in wavelength:
c

ω
=

1

k
=
λcav

2π
, λcav =

λ

n
.

– Purcell factor at resonance: FP =
3Q

4π2V0

(
λ

n

)3

ξ2.

– FP > 1 can be realized for high Q and small modal cavity volume V0

Spontaneous photon emission is, in fact, emission stimulated by vacuum
fluctuations, which can be enhanced in optical cavities at resonance.
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Strong-coupling regime:

Optical cavities in the strong-coupling regime are the stuff of cavity QED,
to be investigated more thoroughly in a later module.

The Jaynes-Cummings model is designed for the examination of the energy-
level structure of a two-level atom interacting with a single quantized mode
of radiation field.

– Hamiltonian: HJC = ~ωSSz + ~ωBa
†a+ Λ(S+a+ S−a

†).

– Energy scale for two-level atom: ~ωS.

– Energy scale for radiation field: ~ωB.

– Coupling strength: Λ = ~g0 = ~

√
µ2

12ω

2ε0~V0

(from earlier).

– Basis vectors: |m,n〉, : m = 0, 1; n = 0, 1, 2, . . ..

– Operators in action:(
1
2
− Sz

)
|m,n〉 = m|m,n〉, S+|m,n〉 =

√
m(1−m+ 1) |m− 1, n〉,

S−|m,n〉 =
√

(1−m)(m+ 1) |m+ 1, n〉,
a†|m,n〉 =

√
n+ 1 |m,n+ 1〉, a|m,n〉 =

√
n |m,n− 1〉.

– Eigenstates for ωS = ωB
.
= ω [lex159]:

|ψ1,0〉 = |1, 0〉,

|ψ1,n〉 =
1√
2

[
|1, n〉+ |0, n− 1〉

]
: n = 1, 2, . . . ,

|ψ0,n〉 =
1√
2

[
|1, n+ 1〉 − |0, n〉

]
: n = 0, 1, 2, . . .

– Energy levels (for n = 0, 1, 2, . . .):

E1,n = ~ω
(
n− 1

2

)
+ ~g0

√
n, E0,n = ~ω

(
n+

1

2

)
− ~g0

√
n+ 1.

– Interaction-mediated level splitting between states of opposite parity:

E1,n − E0,n−1 = 2~g0

√
n.

– The lowest-energy occurrence of such a pair of levels is known as vac-
uum Rabi splitting: E1,1 − E0,0 = 2~g0. Neither level is the lowest.

The Jaynes-Cummings model is an important benchmark in quantum chaos
studies of the spin-boson model (to be discussed in a later module).
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Cold atoms from laser cooling:

Light-induced forces find applications in trapping atoms or molecules and in
laser cooling atomic gases (down to µK region). The nK region is reachable
when laser cooling is combined with evaporative cooling.

Rough outline of the principle of laser cooling:

B The atoms to be cooled have a transition between levels that readily
absorbs light from a laser tuned to resonance.

B ν0: atomic transition frequency.

B νL = ν0 + δ: operating frequency of tunable laser.

B Doppler shift experienced by atoms moving toward laser beam:

ν ′L = νL

√
1 + vx/c

1− vx/c
' νL

(
1 +

vx
c

)
' ν0 + δ + ν0

vx
c
.

B Resonance condition for frequency of Doppler shifted laser light:

δ = −ν0
vx
c

= −vx
λ
.

B Desired effect: atoms moving toward laser beam absorb photons with
much higher probability.

B Photon absorption comes with a change in atomic momentum, which
is negative for resonant atoms:

∆px = −~k = −h
λ
.

B Photon absorption is followed by spontaneous emission in random di-
rections or stimulated emission in the direction of the absorbed light.
Only cycles involving spontaneous emission contribute to cooling.

B A large number of absorption/emission cycles at resonance amount to
an effective attenuation force acting on atoms moving toward the laser:

Fx =
dpx
dt
' ∆px

2τ
= − h

2λτ
.

The factor 2 arises from the fact that in strong laser light spontaneous
emission compete on a par with stimulated emissions.

B Laser cooling continually narrows the width of the (thermal) the veloc-
ity distribution. That width is related to the variance, m〈v2

x〉 ∼ kBT .
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B The effectiveness of laser cooling diminishes toward zero as the width
of the velocity distribution approaches the natural width of the atomic
transition, i.e. when

kBT ∼ h∆ν =
h

τ
.

Doppler cooling is limited by the radiative lifetime of the transition.

Optical molasses:

A more rigorous and detailed analysis produces the following expression (not
derived here) for the attenuation force associated with laser cooling:

Fx(I,∆, vx) = −~k γ

2

I

Is

[
1 +

I

Is
+

(
∆ + kvx
γ/2

)2
]−1

︸ ︷︷ ︸
R(I,∆,vx)

.

– Photon wave number: k = 2π/λ.

– Natural linewidth: γ = 1/τ .

– Optical intensity: I.

– Saturation intensity: Is.

– Measure of detuning: ∆ = 2πδ.

– Net absorption rate:6 R(I,∆, vx).

At low intensity (I � Is) the net absorption rate is proportional to the
intensity: R ∝ I. The dependence of R on ∆ is a Lorentizian with a Doppler
frequency shift, ∆ = −kvx i.e. δ = −vx/λ.

At high intensity (I � Is) the net absorption rate is determined by the
radiative lifetime alone: R → γ/2 = 1/2τ . The factor of 2 introduces the
same correction due to stimulated emissions as encountered before.

The cooling effectiveness of this design diminishes as T decreases.

The velocity distribution f(vx, T ) is well known to be a Gaussian with a
width that narrows as the the temperature drops. However, the width of
R(I,∆, vx) does not.

Fewer atoms atoms are being decelerated by the laser beam, while an in-
creasing number of atoms are being accelerated as shown in the plot below.

6Corrected for (ineffective) stimulated emission.
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The velocity distribution f(vx, T ), centered at vx = 0 is broad at high T
(left) and narrow at low T (right). The profile of the net absorption rate
R(I,∆, vx) is plotted for fixed ∆ = −kv0

x.

f# R R

Y11 v;q
sY; vx

I.T

{

5

This limitation of laser cooling can be pushed to lower T by a change of design
that uses two laser beams irradiating the gas from opposite directions.

The plots below make it plain that cooling remains more effective down to
lower temperatures. The absorption profiles shown are R±

.
= R(I,∓kv0

x, vx).

+
{
\

R* R* R R+

vx vx*V;* "vf -vf v;

,

\
t

ff

\.rq

T

The attenuating force in the new design becomes

Fx(I,∆, vx) = −~k
[
R(I,∆, vx)−R(I,−∆, vx).

At low T , when most atoms are very slow, it is justified the expand the above
expression in powers of vx. The leading term,

Fx  −αvx, α = −8~k2∆

γ

[
I/Is[

1 + I/Is + (2∆/γ)2
]2
]
,

represents a standard damping force, always directed opposite to the velocity
of the atom as in motion through a viscous medium. Hence the name optical
molasses used for this effect.

Doppler limit for laser cooling:

It is possible to identify a limiting temperature achievable via laser cooling
of any design on the basis of the Doppler effect.
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The limiting cooling temperature TDL can be inferred from a balance energy
transfers taking place during the process:

– Rate of energy removed via effective damping:(
dE

dt

)
↓

= Fxvx = −α〈v2
x〉, α

I/Is�1−→ − 8~k2∆

γ

I/Is
[1 + 4∆2/γ2]2

.

Maximum damping is realized for ∆ = −γ/2.

– Heat produced during atom/photon interaction:(
dE

dt

)
↑

=
1

2m

d

dt
〈p2
x〉, 〈p2

x〉 = 2N(~k)2, N = 2Rt.

Absorption rate:

R(I,∆, vx)
|kvx|�∆−→ γ

2

I/Is
1 + I/Is + 4∆2/γ2

I/Is�1−→ γ

2

I/Is
1 + 4∆2/γ2

.

⇒
(
dE

dt

)
↑

=
~2k2γ

m

I/Is
1 + 4∆2/γ2

.

At the Doppler limit, the two rates are in balance:(
dE

dt

)
↓

+

(
dE

dt

)
↑

= 0 ⇒ 〈v2
x〉

8~k2∆

γ

I/Is
[1 + 4∆2/γ2]2

=
~2k2γ

m

I/Is
1 + 4∆2/γ2

.

⇒ m〈v2
x〉 =

~γ2

8∆
[1 + 4∆2/γ2]

∆→−γ/2−→ ~γ
2
.

Equipartition: m〈v2
x〉 = kBTDL.

Doppler limit: kBTDL =
~γ
2

=
~
2τ

.
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