
Quantum Optics II [lln26]

Here we continue the discussion of quantum optics from [lln24] on an intro-
ductory level, in preparation of a presentation at a more advanced level.

Photon bunching and antibunching:

An alternative characterization of light as a stream of photons is based on the
time correlation of the intensity, measurable by an intensity interferometer
(a device developed by astronomers).

Second-order correlation function [lam2]:

g(2)(τ)
.
=
〈I(t)I(t+ τ)〉
〈I(t)〉〈I(t+ τ)〉

, λ(τ)
.
= g(2)(τ)− 1.

The brackets include long-time averages. Under conditions of stationarity,
we can use 〈I(t)〉 = 〈I(t+ τ)〉.

The stream of photons is divided into regimes according to short-time inten-
sity correlations:

(i) λ(τ) ≡ 0 : coherent light,

(ii) λ(0) > λ(τ) : bunched light,

(iii) λ(0) < λ(τ) : antibunched light.
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Bunching is associated with sources of intensity fluctuations and with the
sources of line broadening discussed in [lln24]. Antibunching is a quantum
effect.

Light modeled as harmonic oscillations:

Consider a harmonic oscillator in one dimension.

– Hamiltonian: H =
p2x
2m

+
1

2
mω2x2.

– Canonical equations: ẋ =
∂H
∂px

=
px
m
, ṗx = −∂H

∂x
= −mω2x.

– Lagrange equation of motion: ẍ = −ω2x.

– Solutions: x(t) = x0 sin(ωt+ φ), px(t) =

p0︷ ︸︸ ︷
mωx0 cos(ωt+ φ).

– Scaled variables: q(t)
.
=
√
mx(t), p(t)

.
=
px(t)√
m

.

1



– Scaled Hamiltonian: H =
1

2

(
p2 + ω2q2

)
.

Application to a linearly polarized standing electromagnetic wave of wave-
length λ in a cavity of width L.

– Electric field: Ex(z, t) = E0 sin(kz) sin(ωt), k =
2π

λ
, ω = kc.

– Boundary conditions: sin(kL) = 0 ⇒ k = nπ/L, n = 1, 2, . . .

– Ampère’s law: ∇×B = ε0µ0
∂E

∂t
,
(
∇×B

)
x

=

(
∂Bz

∂y
− ∂By

∂z

)
.

⇒ − ∂By

∂z
= ε0µ0

∂Ex
∂t

= ε0µ0ωE0 sin(kz) cos(ωt).

– Magnetic field: By(z, t) = B0 cos(kz) cos(ωt), B0 =
E0

c
, c =

1
√
ε0µ0

.

– Energy density: u =
ε0
2
E2

0 sin2(kz) sin2(ωt) +
1

2µ0

B2
0 cos2(kz) cos2(ωt).

– Field energy: U =
V

4

[
ε0E

2
0 sin2(ωt) +

1

µ0

B2
0 cos2(ωt)

]
.

– Equivalent oscillator coordinates: q(t) =

√
ε0V

2ω2
E0 sin(ωt),

p(t) =

√
V

2µ0

B0 cos(ωt) =

√
ε0V

2
E0 cos(ωt).

– Equivalent field energy: U = H =
1

2

(
p2 + ω2q2

)
.

The energy of the magnetic (electric) field in the standing wave is represented
by the kinetic (potential) energy of the oscillator.

Phasor diagram and field quadratures:

Consider the electric field of a standing wave with arbitrary phase.

Ex(z, t) = E0 sin(kz) sin(ωt+ φ)

= E0 sin(kz) cosφ sin(ωt) + E0 sin(kz) sinφ cos(ωt)

Field quadratures are dimensionless and split the electric field into two parts
out of phase by 90◦. The rescaling is tailor-made for quantum optics:

X1(t) = X0 sin(ωt), X2(t) = X0 cos(ωt); X0 =

√
ε0V

4~ω
E0.
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⇒ Ex(z, t) =

√
4~ω
ε0V

sin(kz)
[

cosφX1(t) + sinφX2(t)
]
.
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Mapping to harmonic oscillator and quantization:

X1(t) =

√
ω

2~
q(t), X2(t) =

√
1

2~ω
p(t),

~ω
[
X2

1 (t) +X2
2 (t)

]
= ~ωX2

0 =
1

4
ε0E

2
0V =

1

2
(p2 + ω2q2) = ~ω

(
〈n〉+

1

2

)
.

Impact of quantum uncertainty:

∆x∆px ≥
1

2
~ ⇒ ∆q∆p ≥ 1

2
~ ⇒ ∆X1∆X2 =

√
ω

2~

√
1

2~ω
∆q∆p ≥ 1

4
.

Switch to polar coordinates: (X0∆φ)∆X0 ≥
1

4
.
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B ∆X0 represents an uncertainty in amplitude and/or frequency.

B ∆φ represents an uncertainty in phase.
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Coherent states of light:

Coherent light is described quantum mechanically by coherent states. A
more formal description follows later.

In the phasor diagram, a coherent state can be specified by polar coordinates:

|α| = X0 =
√
X2

1 +X2
2 , φ = arctan

X2

X1

.
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The radial coordinate |α| is related to the average number of photons 〈n〉 in
the coherent state (assuming 〈n〉 � 1):

Ucl =
1

4
ε0E

2
0V = ~ωX2

0 = ~ω|α|2, Uqu = ~ω
(
〈n〉+

1

2

)
⇒ 〈n〉 = |α|2.

The variance 〈〈n2〉〉 of the photon count in a coherent state can be inferred
from the uncertainty relation (assuming balanced minimum uncertainty):(

∆|α|
)︸ ︷︷ ︸

1/2

(
|α|∆φ

)︸ ︷︷ ︸
1/2

=
1

4
⇒ ∆n = ∆|α|2 = 2∆|α|︸ ︷︷ ︸

1

|α| = |α|.

⇒ 〈〈n2〉〉 .= 〈(∆n)2〉 = |α|2 = 〈n〉.

This relation between mean and variance confirms that coherent light is char-
acterized by a photon stream with Poisson statistics.

What is the phase uncertainty in coherent light with 〈n〉 � 1? The answer
is provided by the minimum uncertainty (see diagram on the right):

|α|∆φ =
√
〈n〉∆φ =

1

2
⇒ ∆φ =

1

2
√
〈n〉

⇒ 〈〈φ2〉〉 .= 〈(∆φ)2〉 =
1

4〈n〉
.
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Squeezed states of light:

Squeezed light is characterized by unbalanced uncertainty as manifest in the
phasor diagram.
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– Coherent light: ∆X1 = ∆X2 =
1

2

〈n〉�1−→ 〈〈n2〉〉 = 〈n〉, 〈〈φ2〉〉 =
1

4〈n〉
.

– Quadrature-squeezed light: ∆X1 <
1

2
, ∆X2 >

1

2
or vice versa.

– Phase-squeezed light: 〈〈φ2〉〉 < 1

4〈n〉
, 〈〈n2〉〉 > 〈n〉 (super-Poisson).

– Amplitude-squeezed light: 〈〈φ2〉〉 > 1

4〈n〉
, 〈〈n2〉〉 < 〈n〉 (sub-Poisson).

Extreme amplitude squeezing, 〈〈n2〉〉 → 0, produces photon-number states,
characterized by complete phase uncertainty.

Criteria for the classification of light:

We have introduced three ways of classifying light as streams of photons
based on different criteria:

– Statistics : Poisson – super-Poisson – sub-Poisson.

– Correlations : coherent – bunched – anti-bunched.

– Uncertainty : balanced – phase-squeezed – amplitude-squezzed.

There is no one-to-one relationship between these criteria, but the criteria
are not entirely independent.
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Photonic number states:

The most elementary quantum theory of light is based on the quantum har-
monic oscillator. Sketch of an operator solution [lam5].

Hamiltonian: H =
1

2m
P2 +

1

2
mω2Q2.

Ladder operators (raising/lowering, creation/annihilation):

a† =
1√

2m~ω
(
mωQ− ıP

)
, a =

1√
2m~ω

(
mωQ+ ıP

)
.

⇒ P = ı

√
m~ω

2

(
a† − a

)
, Q =

√
~

2mω

(
a+ a†

)
.

Commutators: [Q,P ] = ı~, [a, a†] = 1, [H, a†] = ~ωa†, [H, a] = −~ωa.

Number representation of eigenstates:

– Number operator: N = a†a.

– Hamiltonian: H = ~ω
(
a†a+

1

2

)
.

– Number states: |n〉, n = 0, 1, 2, . . . with 〈n|n′〉 = δnn′ .

– Action of ladder and number operators:

a†|n〉 =
√
n+ 1|n+ 1〉, a|n〉 =

√
n|n− 1〉 ⇒ a†a|n〉 = n|n〉.

– Energy levels: En = ~ω
(
〈n|a†a|n〉+

1

2

)
= ~ω

(
n+

1

2

)
, n = 0, 1, 2, . . .

– Generation of number states from ground state: |n〉 =
1√
n!

(a†)n|0〉.

– Quadrature field operators:

X1 =

√
mω

2~
Q =

1

2

(
a† + a

)
, X2 =

√
1

2~ωm
P =

1

2
ı
(
a† − a

)
.

– Relation to number operator: X2
1 +X2

2 = a†a+ 1
2
.

Photonic number states are eigenstates of the quantum harmonic oscillator.
The number 〈n〉 of photons is not fluctuating, implying 〈〈n2〉〉 = 0.

These attributes represent extreme sub-Poisson statistics and extreme am-
plitude squeezing in the phasor diagram.
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Photonic coherent states:

Coherent states are a normalized but non-orthogonal set of states of the same
quantum harmonic oscillator.

They depend an a complex-valued parameter α and are related to the number
states as follows:

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉.

The reasoning behind this construction will be elucidated later.

Coherent states have balanced minimum uncertainties in the position and
momentum operators and are eigenstates of ladder operators [lex154]:

a|α〉 = α|α〉, 〈α|a† = 〈α|α∗.

The photon statistics of a coherent state follows directly [lex154]:

– Mean and variance: 〈n〉 = |α|2, 〈〈n2〉〉 = 〈n〉.

– Distribution: P (n)
.
= |〈n|α〉|2 =

〈n〉n

n!
e−〈n〉 (Poisson).

The statistics of coherent states of the quantum harmonic oscillator are con-
sistent with coherent light identified earlier in the phasor diagram.

Coherent light is unsqueezed and has balanced minimum uncertainties in the
quadrature fields.

Coherent states are the most localized quantum state in a phase-space rep-
resentation (here the plane of x, p). They can by generated from the ground
state by a translation to an arbitrary point in phase space.

– Point in phase plane: x, p.

– Parameter of coherent state: α =

√
ωm

2~
x+ ı

√
1

2~ωm
p.

– Displacement operator [lex155]: D(α) = eı(pQ−xP)/~ = eαa
†−α∗a.

– Coherent state from ground state: D(α)|0〉 = eαa
†−α∗a|0〉 = |α〉.

Time evolution from Schrödinger equation: H|ψ〉 = ı~
∂

∂t
|ψ〉.

– Stationary states: |n(t)〉 = |n〉e−ıωnt, ωn =
(
n+ 1

2
)ω.

– Coherent state: |α(t)〉 =

[
e−|α0|2/2

∞∑
n=0

[α0e
−ıωt]n√
n!

]
|n〉e−ıωt/2.
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Photonic thermal states:

Unlike number states and coherent states, which are pure quantum states,
thermal states are mixed quantum states.

Only pure quantum states can be represented as state vectors, but all three
kinds of photonic states can be represented by density operators [lam1].

– Number state: ρN = |n〉〈n|.

Tr[ρN] =
∞∑
m=0

〈m|n〉〈n|m〉 = 1.

– Coherent state: ρC = |α〉〈α| = e−|α|
2
∑
nm

(α∗)mαn√
m!n!

|n〉〈m|.

Tr[ρC] = e−|α|
2
∞∑
n=0

|α|2n

n!
= 1.

– Thermal state: ρT =
∞∑
n=0

Pn|n〉〈n|, Pn = (1− e−β~ω) e−βn~ω.

Tr[ρT] =
∞∑
n=0

Pn = (1− e−β~ω)
∞∑
n=0

(e−β~ω)n = 1.

Incoherent light more generally is represented by mixed quantum states
whose density operator is not diagonal in the basis of number states.

Note that for all three types of photonic states we have used the number
states |n〉 of the quantum harmonic oscillator as basis states.

In our next task it is the coherent states |α〉 that are being employed for all
three types of photonic states.

Phase-space representations of photonic states:

From the overlap 〈γ|ψ〉 of any pure quantum state |ψ〉 with the coherent
states |γ〉 it is possible to construct a probability distribution in phase space.

The coherent state to be used for that purpose is centered at point (x, p) in
phase space:

|x, p〉 = e−|γ|
2/2

∞∑
n=0

γn√
n!
|n〉, γ =

√
ωm

2~
x+ ı

√
1

2~ωm
p = x̄+ ıp̄.
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Husimi distribution for a pure quantum state |ψ〉 in general:

Wψ(x, p)
.
=

1

π
|〈x, p|ψ〉|2.

The Husimi distribution thus defined satisfies the requirements of a proba-
bility distribution. It is non-negative everywhere and it is normalized. The
factor 1/π compensates for the fact that coherent states are an overcomplete
set as is evident in [lex185].

Note the difference from the absolute square of the wave function, |ψ(x)|2,
which yields a probability distribution in position space [lam5].

Application to the (stationary) number state |n〉:

Wn(x, p) =
1

π
|〈x, p|n〉|2 =

1

π
e−|γ|

2 |γ|2n

n!
, |γ|2 = x̄2 + p̄2.

Application to the coherent state centered at α = x̄0 + ıp̄0:

Wα(x, p) =
1

π
|〈x, p|α〉|2 =

1

π
e−(|β|

2+|α|2)
∞∑
n=0

(γ∗α + γα∗)n

n!

=
1

π
e−(|γ|

2+|α|2)eγ
∗α+γα∗ =

1

π
e−|γ−α|

2

.

Time-dependence of coherent state: set α = α0e
−ıωt.
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[images from Regez et al. 1996]

Left: Husimi distribution of eigenstates (here for n = 0, 5, 9) are time-
independent and have rotational symmetry in the scaled phase plane x̄, p̄.

Right: Husimi distributions of coherent states are time-dependent. One is
shown for three successive instants that span one period 2π/ω. The peak
moves clockwise like a classical phase point would.
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A natural generalization of Husimi distributions to mixed (M) quantum
states starts from the density operator in the form

ρM =
∑
ψ

Pψ|ψ〉〈ψ|,
∑
ψ

Pψ = 1,

as introduced in [lam1], and continues with the construction,

WM(x, p) =
1

π

∑
ψ

Pψ|〈x, p|ψ〉|2,

which is then also guaranteed to be normalized and non-negative.

Application to the photonic thermal state (at β = 1/kBT ):

Wβ(x, p) =
e−|γ|

2

π

∞∑
n=0

Pn
|γ|2n

n!
, |γ|2 = x̄2 + p̄2, Pn = (1− e−β~ω) e−βn~ω.

Photonic thermal states are mixed quantum states composed of (stationary)
number states. This makes the Husimi distribution time-independent.

The graph represents the function Wβ(x, p) for β~ω = 1.

Consider the two photonic number states |0〉 and |1〉. Both are stationary
states. Their Husimi distributions are time-independent.

If we combine them into a mixed state,

ρm =
1

2

[
|0〉〈0|+ |1〉〈1|

]
,

its Husimi distribution, Wm(x, p), is again time-independent [lex186].
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The graphs shows a central peak in the phase plane, which somewhat flat-
tened and broadened relative to thar representing the state |0〉 alone.

If, on the other hand, we combine them into a pure quantum state,

|ψ〉 =
1√
2

[
|0〉+ |1〉

]
, ρe = |ψ〉〈ψ|,

its Husimi distribution, We(x, p, t), is time-dependent [lex186].

The four graphs are snapshots taken at successive time interval 1
4
τ , where

τ = 2π/ω. Taking the time average of We(x, p, t) produces Wm(x, p).
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Intensity correlations of photonic number states:

Intensity interferometer of HBT experiment:1

– input ports 1,2

– output ports 3,4 with
photon detectors,

– timer starts with D3 de-
tection and stops with
D4 detection,

– 50:50 beam splitter.

Light

€2

rr{>
D3t3tr

€4

D4

50:50

Start

Stop

TIMER

[image from Fox 2014]

Second-order correlation function for photonic number states:

g(2)(τ) =
〈n3(t)n4(t+ τ)〉
〈n3(t)〉〈n4(t+ τ)〉

τ→0−→ 〈a†3a
†
4a4a3〉

〈a†3a3〉〈a
†
4a4〉

.

The last step also involves normal ordering of operators.

Input electric fields: E1, E2.

Output electric fields:2 E3 =
1√
2

(
E1 − E2), E4 =

1√
2

(
E1 + E2).

Harmonic oscillator representation of electric fields: E ∝ a† + a.

Consequence of linearity: a3 =
1√
2

(
a1 − a2), a4 =

1√
2

(
a1 + a2), etc.

Input port 2 is shut down: |Ψ〉 = |n, 0〉 (stream of photons from port 1).

Expectation values for photonic number states:

〈a†3a3〉 = 〈a†4a4〉 =
1

2
〈n〉, 〈a†3a

†
4a4a3〉 =

1

4

[
〈n〉2 − 〈n〉

]
.

Evidence of antibunching: g(2)(0) =
〈n〉[〈n〉 − 1]

〈n〉2
< 1.

1R. Hanbury Brown and R. Q. Twiss are astronomers.
2The minus sign arises from a phase change in the 50:50 beam splitter.
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