Relat iVity I I [ln25]

Earlier we have identified key differences between situations where nonrela-
tivistic (NR) mechanics reigns and situations where the deviating predictions
of special relativity (SR) become significant.

n16] For both kinds of situations we can identify events as points with four coor-
dinates: one time coordinate and three space coordinates.

The coordinate transformation of an event as observed from inertial reference
frames in relative motion is the Galilei transformation for NR situations and
the (more general) Lorentz transformation, also valid in SR situations.

The Galilei transformation leaves (i) time intervals and (ii) distances (in 3D
space) between simultaneous events invariant. The Lorentz transformation
leaves distances in 4D spacetime invariant.

Spacetime:

oordinate 4-vector (contravariant x* and covariant x,):
Coordinate 4 t t t x# and tx,

20 ct Zo —ct

i xt x T x
€T = 2 = s ‘/L‘,U, = =

T Y 1) Yy

3 2z T3 2z

Distance in spacetime (two renditions):!

cdt —cdt
(ds)? = datda, = | Ao (edt)? + (de)® + (dy)® + (d2)?,
dy dy
dz
-1 0 0 0 cdt
01 00 dz
2 U P
(ds)” = g datdx” = (cdt dx dy,dz 00 10 dy |
00 01 dz
= —(cdt)? 2+ (dy)* + (d

where g, is the metric tensor (with signature — + ++).

The first rendition is a scalar product between two vectors. The second
rendition involves two matrix multiplications or two contractions of a rank-4
tensor.

L Any repeated spacetime index is understood to be summed over.
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Lorentz transformation matrix:

The Lorentz transformation is a linear coordinate transformation in 4-dimensional
spacetime between inertial frames in relative motion.

Without loss of generality we assume that frame F’ moves with velocity
v = vi relative to frame F.

Transformation matrix:

vy By 0 0
-8By v 0 0 ) 1
_ 2 —_ — e —
A_Az/_ 0 O 1 O ) 5_07 ’7 /—1_52
0 0 0 1
v By 0 0
4 4w | By v 0 0
A _A“_ 0 0 1 0
0 0 0 1

A, and A¥, are symmetric and mutually inverse matrices:

v By 0 0 vy =By 0 0 1000
By ~v 0 O -8By v O 0| (0100
0 0 1 0 0 0 1 0] | 0010
0O 0 0 1 0 0 0 1 0001
Lorentz transformation: 2 = A* ¥ ..

ct’ v =By 0 0 ct ~yet — Byx
2 | | -8By v 0 0 z | | vz — Bt
v | 0 0 1 0 y | y

2! 0 0 0 1 z z

Consistency with the earlier rendition is evident:

=7t —vz/c?), 2 =~@x—-0t), Y=y, ==z

Equivalent transformation: z, = A /=,.
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Lorentz transformation of 4-vectors and invariant scalars:

We recall that worldlines are strings of events in spacetime associated with
a localized physical object. Spacetime positions are 4-vectors.

Infinitesimal displacements along worldlines in two reference frames of the
same string of events are related via Lorentz transformation, here stated in
two equivalent renditions:

da'™ = A dx",  dx,, = A dx,.
The spacetime distance is an invariant under a Lorentz transformation:
(ds)? = dx,da* = —c2(dt)? + (dz)* + (dy)* + (dz)*.

= do)da’" = A de, A da” = drgds” AN, = do,dx”.
5

The Lorentz invariant (ds)?, which can be positive or negative, determines
the nature of the relation between events:

— Events connected by (As)? < 0 are related time-like. They are in
the same position at different times for some reference frame, which
facilitates a causal relation.

— Events connected by (As)? > 0 are related space-like. They are simul-
taneous and spatially separated for some reference frame, which rules
out a causal relation.

Relativistic kinematics and dynamics, including electrodynamics, employ fur-
ther 4-vectors. They all Lorentz transform in the same way between frames
in relative motion.

Associated with each 4-vector is a Lorentz invariant akin to the spacetime
distance (ds)?.

However, not all dynamics can be described by 4-vectors and scalars, which
are rank-1 and rank-0 tensors, respectively. We shall see that the electro-
magnetic field, in particular, is represented by a rank-2 tensor.
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Kinematics:

A particle is at rest in frame F'.

Frame F' moves relative to F with velocity u.

Position increment of particle in frame F: dx = dzi+ dyj +dz k.

Time increment in frame F: dt.

d . . R
Velocity of particle in F: u = d—)t( = Ui+ u,j+uk

Proper time 7 = t’ is a Lorentz invariant scalar.

Lorentz invariant displacement in spacetime:
(ds')? = (ds)* = — (cd7)? = (dx)* — (cdt)?

= CdT:\/C2<dt)2—(dX>2 = dr =dt\/1 —u?/c.

Construction of the velocity 4-vector from the displacement 4-vector dz* and
the proper-time scalar dr:

cdt n° c
uydt |7t dxt 1 u
dl’u = z = S = = z
uydt g n° dr  T—u?fc2 | Uy
w,dt n3 U,

Lorentz invariant associated with velocity 4-vector is a universal constant:

2 2

—c“+u
14 — :_2
Tl =1 gzje = 7

The Lorentz transformation of the velocity 4-vector,
't = A,
produces the addition rules for the components w,, u,, U,

/ Uy —V r_ uy/7 I u2/7

fr =7 — ugv/c?’ A —ugv/c? 71— v/

more directly than earlier the derivation. The time derivative in the con-
struction of n* uses the proper time 7, which is a Lorentz invariant scalar.
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Energy and momentum:
The rest mass m is a Lorentz invariant scalar.

Construction of the momentum 4-vector from the velocity 4-vector and the
rest-mass scalar:

E/c

0

1
. Pz
’u': :m ’u': s
D z U Dy

P

composed of relativistic energy (scalar) and momentum (3-vector) familiar
from [lIn16],

me? mu

Jiowe YT T e

The Lorentz, transformation of the momentum 4-vector,

E =mn’c =

plu = AMVpV’

ensures that energy and momentum conservation is preserved between frames
of reference.

2

Rest energy: Ey = mc® (scalar equivalent to rest mass).

From the Lorentz invariant associated with the momentum 4-vector we con-
struct the relativistic energy-momentum relation as follows:

" =pp" = Ej/E=E/¢ —p° = E=y/m¥!+pic

2
p

55 mc2+—.

mac 2m

2
Nonrelativistic limit: E = mc?y/1 + P p=me

The first term (rest energy) has no impact on nonrelativistic dynamics. The
second term (kinetic energy) is a key quantity in nonrelativistic dynamics.

Ultrarelativistic limit: F = \/m p>me »e.

Photons (particles without rest mass, traveling at the speed of light) are a
realization of the ultrarelativistic limit.

The photon energy and momentum are established in quantum mechanics:

w
E=hw, p=hk, —=c
K|
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Dynamics:

The first postulate of special relativity asserts that the laws of physics are
the same in all inertial frames. This postulate is satisfied by equations of
motion expressed by quantities that Lorentz transform like tensors.

— Rank-0 tensors (scalars) are Lorentz invariants.
— Rank-1 tensors (4-vectors) transform like a’* = A* a”.
— Rank-2 tensors transform like A" = A% A”; AP,

In the context of Newtonian mechanics, the second law is fundamental and
the work-energy theorem a corollary.

— Newton’s second law: — = F.

dt

dE
— Work-energy theorem: o F-u.

The terms on the left can be assembled into a 4-vector as the derivative of
the momentum 4-vector p* with respect to the (scalar) proper time 7, while
force 4-vector K* is constructed from the terms on the right as follows:

LdE _1dE/dt __Fouje .,
cdr  cdrfdt ST —w2/2

dp dp/dt F Sk | ke

E_dT/dt_,/l—uQ/CQ_ K3

dpH
Covariant form of equation of motion: di = K*.
T

The force 4-vector K* goes by the name of Minkowski force.

Whereas all Minkowski forces are 4-vectors, in some cases that 4-vector is
the result of a tensor contraction.

Tensor contractions include the inner product of two tensors (involving the
summation over one common index.) If the two tensors are of rank n and
m, respectively, the contraction produces a tensor of rank n +m — 2.

The invariant scalar a*a, associated with a 4-vector a* is the contraction of
the (rank-2) tensor a*a, constructed as a tensor product of two 4-vectors.



Lorentz force and electromagnetic field tensor:

Expressing the equation of motion for a particle with charge ¢ subject to
the Lorentz force in covariant form naturally leads to a representation of the
electric field E and and the magnetic field B in the form of a rank-2 tensor.

Lorentz force: F = ¢E + qu x B (3-vector).
Construction of the Lorentz-force 4-vector:
50— ¢E-u/c E K_q(E—i—uxB)

T iwe e BT imae

— One ingredient is the velocity 4-vector introduced earlier:

E
= g1’ —+qn xB.

c

n = S
V1I—u?/ | Wy

u,

— The magnetic force qu x B is perpendicular to u. Therefore, it does
not contribute to K°.

— Lorentz force 4-vector as tensor contraction: K* = gn, F'*".

0 E./c E,/c E./c

) ) —FE./c 0 B, -B
_ . MY x z y
Electromagnetic field tensor: F' _E,Je -B, 0 B,

_E.Je B, -B, 0
— Temporal component: 4
0 00 0j £ E
K = q(nF™ +n;F”) = qnj — = qn - —.
— Spatial components:?

K' = q(noF" +n;F7) = qn° — + g’ B* = ¢ — + qn x B.

dpt
Covariant form of the equation of motion: di = qn, F".
T

This relation features two invariant scalars (¢ and 7), two 4-vectors (p* and
n,), and one rank-2 tensor (F*”). It involves one contraction of the rank-3
tensor qn, F*.

2The Levi-Civita tensor €ij, vanishes unless all indices have different values. We have
€;j, = +1 if their order is cyclic (123, 231, 312) and €;;, = —1 if it is anticyclic.
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Lorentz transformation of electromagnetic field tensor:

The principle of relativity enforced for various situations of charge and cur-
rent configurations produces the following evidence.

Field components in frame F’' moving with velocity vi relative to frame F:

B, =E, E,=~(E,—vB.), E. =~(E, +vB,),
B! = B,, Bg’! =~(B, +vE,/c?), B.=~(B,—vE,/d?).

The inverse transformation interchanges primed and unprimed field compo-
nents and replaces v by —v.

Transformation relation for the electromagnetic field tensor:

F/;w — A" AV FPo
p o ’

The (linear) Lorentz transformation mixes electric and magnetic fields as it
mixes space and time coordinates and as it mixes momentum components
with energy.

Dual electromagnetic field tensor:

o B, B, B
—B, 0 —E./c E,/c
-B, E./c 0 —E,/c
-B, —E,/c E,/c 0

G =

1
Duality relation between field tensors: G" = 56’“’0‘5 Fop.

Completely antisymmetric tensor e#**? is zero if not all indices are different
and +1 (—1) for even (odd) permutations of 0123.

Both field tensors feature in a covariant formulation of Maxwell’s equations.

Duality here refers to a symmetry of electromagnetism. The duality trans-
formation F* — G" is a symmetry transformation, which leaves Maxwell’s
equations invariant.

Maxwell’s equations also contain sources, namely the charge density p and the
current density J. The sources are also in need of a covariant representation
(to be discussed below.)

3Given that the fields are functions of space and time, the transformation, z/# = A* Ax>‘,
of the coordinate 4-vector is implied.

[lex95]



Partial derivatives Lorentz transformed:

The fundamental laws of classical electrodynamics — Maxwell’s equations for
the fields and sources and the continuity equation for the sources — involve
partial derivatives with respect to time and space coordinates.*

— Gauss’s law for the electric field: V- E = ﬁ,
€0

— Gauss’s law for the magnetic field: V- B = 0,
0B

~ Faraday’s law: VxE =—"—
araday s law X 615

OE
— Ampere’s law: V x B = Hoco + pod,

0
— Continuity equation: V -J = —a—?.

One direct demonstration of the Lorentz invariance of these laws requires
relations between partial derivatives with respect to coordinates of frames in
relative motion.

Lorentz transformed differentials of spacetime coordinates:

da' =(dw —vdt), dy =dy, d='=dz, dt' = (dt - 5 dv)

= dr =~(d' +odt"), dy=dy, dz=d, dt=r <dt’ + % da:') )
c

Partial derivatives transformed by use of chain rule:

O _(9x\O  (otNO _ (9 vO

ox'  \ow' ) oz " \ox') ot~ "\ox " 2ot)’
o _(wyo_o o _(9:\o_0
oy \oy' ) oy Oy’ 9z \9z' ) 0z 92

o _(otNo (oxNO _ (0 O
o \ov)ot " \ov)or” "\ot "oz )

4We have shown earlier [lln15] that Maxwell’s equations are only self-consistent if the
sources satisfy the continuity equation.



Current 4-vector and continuity equation:

Evidence for the transformation properties of the charge density p and the
current density J if frame F' moves with velocity vi relative to frame F:

[lam?7] p=r <p - g Jx> S =9(Je = Bep), Jy=y, Jo= .

— Charge density is enhanced on account of length contraction.
— Current density is enhanced on account of time dilation.

— The charge density in a current-carrying conductor is modified because
length contraction differs for positive and negative charge carriers.

— A moving charged object contributes to the current density an amount
proportional to its velocity and enhanced by time dilation.

cp
Current 4-vector: JV = iz , JHE=AR .
y
J.
Continuity equation in covariant form,
aJ* dcp  0J, 0dJ, 0J dp
JH=—=0 = . Y “=0 = V-J=——.
D oct) "o oy T oz o0

Its construction from two 4-vectors, J* and z*, guarantees its Lorentz in-
variance.

Lorentz invariance of continuity equation demonstrated differently:

0 oy (2 52 (P
at,—l—VJ (at—l—ﬁc&)(p CJﬁ)

o BO 0J, 0J,
+ <—x+z—> V(Jx—ﬁcp)"‘a_y"‘ 9>

_0Op 2 2.2 0T _[2.2 2 9y | O
_8tw+8xw+ay+az
dp

=, TVI=
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Maxwell’s equations in covariant form:

We have introduced the (rank-2) electromagnetic field tensor F** and its
dual tensor G* earlier when we established the Lorentz force as a 4-vector.

Maxwell’s equations in covariant form are two relations involving both tensors
representing the fields and the current 4-vector representing the sources:
oFH oGr

o,F* = = poJ*, 0,GM = =0
ox” Ho ox”

The first equation, which involves sources, is a representation of Gauss’s law
for the electric field (u = 0) and Ampere’s law (u = 1,2, 3).

— Gauss’s law for electric field:

oOF% 10E, 10E, 10FE p
=yt = 4 DT = V-E="—.
o 10 c dr ¢ Oy * c oz 1P €0
Fr OE
— Ampere’s law: o woJ", pn=123 = VxB= ,uoeoa—i—,uo.].
xl/

1 0E, 0B. 0B, 0B, 0B, OE,

=1:—— = = e
a 2ot oy 0r Ml T g g, T ooy tho
1 0E, 0B. OB 0B, OB O
—9.__ y z T _ 7 z z _ ULy J
s 2ot ox 0: M T g gy T Mgy THed
| 0E. 0B, OB OB, OB OF
P A e T Y S R N
s 2ot oy ox M T op Ty Mgy T

The second equation, which does not involve sources, is a representation of
Gauss’s law for the magnetic field (4 = 0) and Faraday’s law (u = 1,2, 3).

— Gauss’s law for magnetic field:

Ov
aaiyzo iaa%JraazMaa%:o = V-B=0.
— Faraday’s law: aGW:O, p=123 = VXE:_a_B'
ox? ot
10B, 10E, 10E, OE, O0FE, 0B,
=L S T ey Tea: ) T ey e ot
h—2 _183y+18E2_18Em:0 N aEm_ﬁEZ:_aBy
c Ot c Ox c 0z 0z ox ot
Y _19B. 10k, 10K, _, _ 0B, OE, _ 0B
c Ot c dr ¢ Oy Ox Ay ot
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Lorentz invariance of Maxwell’s equations:

The covariant formulation of Maxwell’s equations presented in the previous
section guarantees their Lorentz invariance due to their construction from
rank-1 and rank-2 tensors.

Alternatively, we can demonstrate the Lorentz invariance of each Maxwell
equation separately in the way we accomplished the task earlier for the con-
tinuity equation satisfied by the sources p and J.

0B, OB, 0B
+ L+

vieB =5 oy | 9
- 5o g 8 d B
== <a—x+za Bx—i—a—yv By+EEZ +@_ Bz CEy
0B, 0B, 9B.\, f (0B, 0E. 0K\ _,
Ox dy 0z ot dy oz )
i pre
OFE' OE! OF'
/. / — x Y z
VR = T ey T o
_ B o 0 0
(a:ﬁ cat)E gy By = BeBe) & 5oy (Ex 4 feb,)
B 8E$+8Ey+aE e LOB: _ (9B. 0B,
T\ or "oy T ar ) TP @ By 0z
vE (52-vB),
= |V E— o] = = [p—ﬁJ] -
Cc €0

OB’ OB OF OF!
/ E/ — T z Y
((‘%’ VX )x or oy o

0 0 0 0
(8t + BC ) Bx + a_yf}/(Ez + BCBy) - £V(Ey - 6082)
B
Yy

B 6 aB L 0B, 0B\ (0B, O0B. OB\ _,
-7 a: ) "ot Ty a2 )

(38 +vxB) =0

0
V-B=

The invariance of Faraday’s law for the other two Cartesian components and
of Ampere’s law are demonstrated similarly.

12
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4-vector potential:

d/c
. v A,
Definition: A" = A,
A,
Relation between potentials and fields in covariant form:
0AY QAW
= — = oMAY — 9V AH. 1
v, Ox, (1)
oopot B 104. 102 By 104, 109
c c Ot cox’ c c Ot cOy’
E 10A 109 0A
FO3:_Z:__ z L U% E—_vp_ 22
c c Ot c 0z = v ot
0A 0A 0A 0A
FIZZBZ__y__x F13_ B, — z T
> ox oy’ Yo ox 0z’
A A
F23:Bx:&—h = B=VxA.
dy 0z

> The remaining off-diagonal elements duplicate these results.

> The diagonal elements are identically zero.

Implications for the structure of Maxwell’s equations in covariant form as
established earlier:

2% 0%
oF — oG _0
ox”

> The dependence (1) of F** on A” guarantees that tensor G* as inferred
from the duality relation satisfies the second (homogeneous) relation.

> The first (inhomogeneous) relation can be transformed as follows:

oFm 0 |0AY 0A¥ 0 [0A” 0 [0A*
_ — _ = g J".

orv Oz Oz, B or, | Oz, | Oz Oz, | Ox”
[1In16] > The Lorenz gauge condition implies
109 0AY
V- A=——— = 0.

=
2 ot oxV
> The first relation becomes an inhomogeneous wave equation:

D2 Ar , 1077 ., i
Or, 0" {V } AT =—nod

2 Ot?

D’Alembertian OJ
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Electromagnetic wave observed in moving frames:
Linearly polarized plane wave traveling in the positive x-direction.

Views from frame F and from frame F’ traveling with velocity v = virelative
to frame F:

A~ ~
.

E(x,t) = Eycos(kx —wt)j, B(x,t) = ?0 cos(kx — wt) k;

/!

E'(x,t) = E} cos(k'z’ —w't)j, B(x,t)= % cos(k'z’ — w't') k.
Transformation of 4-vector (w/c,k): (here with k, =k, k, =k, =0)
kr — wt = ky(z' +ot') —wy(t’ +va'/?) = k2’ — W't
Collect coefficients of 2’ and t':
= K =7k —-ww/c?), W =~v(w-—uvk).

Doppler effect for electromagnetic wave: use w’ = ¢k’ in the first equation or
w = ck in the second equation:

W=9(1-v/c)w= U—i;Z;Zw

For v > 0 (v < 0) we observe a red shift (blue shift) in frame F.

The transformation of the field tensor produces amplitude changes as well:

1—wv/c
1+v/c

By =v(By — (vEy/c®) = v(1 —v/c)By = 4 /1;—2;2 By.

A red shift (blue shift) is associated with a decreasing (increasing) amplitude
in both the electric and magnetic fields.

E, =~(Ey —vBy) =v(1 —v/c)Ey =

05
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Energy-momentum flux tensor:

Earlier we have introduced the momentum 4-vector p* of a massive particle
and the equation of motion for a charged particle in an electromagnetic field:
dpt
— =qn,F".
dT q,r]l/
Here we generalize this equation to a continuum of charged matter positioned
and in moving in an electromagnetic field:

opPH

= J,F".
or

— Momentum density 4-vector: P*H.
— Current 4-vector (from earlier): J*.
— Electromagnetic field tensor: F*”.

— Flux of energy and momentum carried by charged matter: J, F'*.

Continuity equation expressing charge conservation:

aJ*

-2 -0

oxH
Continuity equation expressing the conservation of field energy in the absence
of sources (charges and currents):

oTH
=0
ox”

In this relation we postulate a tensor T"” expressing the flux of energy and
momentum pertaining to the electromagnetic field.

The generalization of this continuity equation in the presence of charged
matter adds a term which expresses the transfer of energy and momentum
between field and matter:

oTw
ox”

+ J,F* =0.

The energy-momentum flur tensor of the electromagnetic field, also named
stress-energy-momentum tensor is constructed as follows:

1 1
TH = — |FHPEY — Zg" PR
Ho P4 e

where g"” is the metric tensor introduced earlier.
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— Temporal component (= 0): Poynting theorem

1 107  97%
- J.E=— — .
= c c Ot oz’

> J - E: rate at which electric field does work on charged matter,
1 [E?

> TW =y=_— [— + BQ} . field energy density;,
2pg | 2

, 1
> ¢T% =8 = —E x B: Poynting vector.
Ho

— Spatial components (=i = 1,2,3):

; - 1T  9TY
= pE' + ¢ J'BF = —— - .
PR ik c ot oa
> pE' + €;;1J7 B: force per unit volume acting on charged matter,
TiO
> = II = —: momentum density of electromagnetic field,
c c

> T%: momentum flux.

Summary list of Lorentz transformations:

— spacetime coordinates:

t'=~(t— vx||/02), xh =v(z —vt), x| =x,.
— velocity:
UH — v

1 —wvuy/c?

u

U/H - (1 —vuy/c?)

/_
u, =

— energy and momentum:

E'=~(E —wp)), p|=(p —vE/S), pL=pL
— electric and magnetic fields:

Ey=E, E|,=~E_+vxB)),

B =B, B =7B.-vxE//?).

The inverse transformation interchanges primed and unprimed field compo-
nents and replaces v, v by —v, —v, respectively.
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