
Relativity II [lln25]

Earlier we have identified key differences between situations where nonrela-
tivistic (NR) mechanics reigns and situations where the deviating predictions
of special relativity (SR) become significant.

[lln16] For both kinds of situations we can identify events as points with four coor-
dinates: one time coordinate and three space coordinates.

The coordinate transformation of an event as observed from inertial reference
frames in relative motion is the Galilei transformation for NR situations and
the (more general) Lorentz transformation, also valid in SR situations.

The Galilei transformation leaves (i) time intervals and (ii) distances (in 3D
space) between simultaneous events invariant. The Lorentz transformation
leaves distances in 4D spacetime invariant.

Spacetime:

Coordinate 4-vector (contravariant xµ and covariant xµ):

xµ
.
=


x0

x1

x2

x3

 =


ct
x
y
z

 , xµ
.
=


x0
x1
x2
x3

 =


−ct
x
y
z

 .

Distance in spacetime (two renditions):1

(ds)2
.
= dxµdxµ =


cdt
dx
dy
dz



−cdt
dx
dy
dz

 = −(cdt)2 + (dx)2 + (dy)2 + (dz)2,

(ds)2
.
= gµνdx

µdxν =
(
cdt, dx, dy, dz

)
−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1




cdt
dx
dy
dz

 ,

= −(cdt)2 + (dx)2 + (dy)2 + (dz)2

where gµν is the metric tensor (with signature −+ ++).

The first rendition is a scalar product between two vectors. The second
rendition involves two matrix multiplications or two contractions of a rank-4
tensor.

1Any repeated spacetime index is understood to be summed over.
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Lorentz transformation matrix:

The Lorentz transformation is a linear coordinate transformation in 4-dimensional
spacetime between inertial frames in relative motion.

[lln16] Without loss of generality we assume that frame F ′ moves with velocity
v = vî relative to frame F .

Transformation matrix:

Λ = Λµ
ν =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 ; β
.
=
v

c
, γ

.
=

1√
1− β2

.

Λ−1 = Λ ν
µ =


γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1

 .

Λ ν
µ and Λµ

ν are symmetric and mutually inverse matrices:
γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1




γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Lorentz transformation: x′µ = Λµ
νx

ν i.e.
ct′

x′

y′

z′

 =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1




ct
x
y
z

 =


γct− βγx
γx− βγct

y
z

 .

Consistency with the earlier rendition is evident:[lln16]

t′ = γ(t− vx/c2), x′ = γ(x− vt), y′ = y, z′ = z.

Equivalent transformation: x′µ = Λ ν
µ xν .
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Lorentz transformation of 4-vectors and invariant scalars:

We recall that worldlines are strings of events in spacetime associated with
a localized physical object. Spacetime positions are 4-vectors.

[lln16] Infinitesimal displacements along worldlines in two reference frames of the
same string of events are related via Lorentz transformation, here stated in
two equivalent renditions:

dx′µ = Λµ
νdx

ν , dx′µ = Λ σ
µ dxσ.

The spacetime distance is an invariant under a Lorentz transformation:

(ds)2
.
= dxµdx

µ = −c2(dt)2 + (dx)2 + (dy)2 + (dz)2.

⇒ dx′µdx
′µ = Λ σ

µ dxσΛµ
νdx

ν = dxσdx
ν Λ σ

µ Λµ
ν︸ ︷︷ ︸

δσν

= dxνdx
ν .

The Lorentz invariant (ds)2, which can be positive or negative, determines
the nature of the relation between events:[lln16]

– Events connected by (∆s)2 < 0 are related time-like. They are in
the same position at different times for some reference frame, which
facilitates a causal relation.

– Events connected by (∆s)2 > 0 are related space-like. They are simul-
taneous and spatially separated for some reference frame, which rules
out a causal relation.

Relativistic kinematics and dynamics, including electrodynamics, employ fur-
ther 4-vectors. They all Lorentz transform in the same way between frames
in relative motion.

Associated with each 4-vector is a Lorentz invariant akin to the spacetime
distance (ds)2.

However, not all dynamics can be described by 4-vectors and scalars, which
are rank-1 and rank-0 tensors, respectively. We shall see that the electro-
magnetic field, in particular, is represented by a rank-2 tensor.
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Kinematics:

A particle is at rest in frame F ′.

Frame F ′ moves relative to F with velocity u.

Position increment of particle in frame F : dx = dx î + dy ĵ + dz k̂.

Time increment in frame F : dt.

Velocity of particle in F : u =
dx

dt
= ux î + uy ĵ + uz k̂.

Proper time τ = t′ is a Lorentz invariant scalar.

Lorentz invariant displacement in spacetime:

(ds′)2 = (ds)2 ⇒ − (cdτ)2 = (dx)2 − (cdt)2

⇒ cdτ =
√
c2(dt)2 − (dx)2 ⇒ dτ = dt

√
1− u2/c2.

Construction of the velocity 4-vector from the displacement 4-vector dxµ and
the proper-time scalar dτ :

dxµ =


cdt
uxdt
uydt
uzdt

 ⇒ ηµ
.
=


η0

η1

η2

η3

 =
dxµ

dτ
=

1√
1− u2/c2


c
ux
uy
uz

 .

Lorentz invariant associated with velocity 4-vector is a universal constant:

ηµηµ =
−c2 + u2

1− u2/c2
= −c2.

The Lorentz transformation of the velocity 4-vector,

η′µ = Λµ
νη

ν ,

produces the addition rules for the components ux, uy, ux, [lex91][lex219]

u′x =
ux − v

1− uxv/c2
, u′y =

uy/γ

1− uxv/c2
, u′z =

uz/γ

1− uxv/c2
,

more directly than earlier the derivation. The time derivative in the con-[lln16]

struction of ηµ uses the proper time τ , which is a Lorentz invariant scalar.
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Energy and momentum:

The rest mass m is a Lorentz invariant scalar.

Construction of the momentum 4-vector from the velocity 4-vector and the
rest-mass scalar:

pµ
.
=


p0

p1

p2

p3

 = mηµ =


E/c
px
py
pz

 ,

composed of relativistic energy (scalar) and momentum (3-vector) familiar
from [lln16],

E = mη0c =
mc2√

1− u2/c2
, p = mη =

mu√
1− u2/c2

.

The Lorentz, transformation of the momentum 4-vector,

p′µ = Λµ
νp
ν ,

ensures that energy and momentum conservation is preserved between frames
of reference.

Rest energy: E0 = mc2 (scalar equivalent to rest mass).

From the Lorentz invariant associated with the momentum 4-vector we con-
struct the relativistic energy-momentum relation as follows:

p′µp
′µ = pµp

µ ⇒ E2
0/c

2 = E2/c2 − p2 ⇒ E =
√
m2c4 + p2c2.

Nonrelativistic limit: E = mc2
√

1 +
p2

m2c2
p�mc−→ mc2 +

p2

2m
.

The first term (rest energy) has no impact on nonrelativistic dynamics. The
second term (kinetic energy) is a key quantity in nonrelativistic dynamics.

Ultrarelativistic limit: E =
√
m2c4 + p2c2

p�mc−→ pc.

Photons (particles without rest mass, traveling at the speed of light) are a
realization of the ultrarelativistic limit.

The photon energy and momentum are established in quantum mechanics:[lln24]

E = ~ω, p = ~k,
ω

|k|
= c.
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Dynamics:

The first postulate of special relativity asserts that the laws of physics are
the same in all inertial frames. This postulate is satisfied by equations of

[lln16]
motion expressed by quantities that Lorentz transform like tensors.

– Rank-0 tensors (scalars) are Lorentz invariants.

– Rank-1 tensors (4-vectors) transform like a′µ = Λµ
νa

ν .

– Rank-2 tensors transform like A′µν = Λµ
αΛν

βA
αβ.

In the context of Newtonian mechanics, the second law is fundamental and
the work-energy theorem a corollary.

– Newton’s second law:
dp

dt
= F.

– Work-energy theorem:
dE

dt
= F · u.

The terms on the left can be assembled into a 4-vector as the derivative of
the momentum 4-vector pµ with respect to the (scalar) proper time τ , while
force 4-vector Kµ is constructed from the terms on the right as follows:

1

c

dE

dτ
=

1

c

dE/dt

dτ/dt
=

F · u/c√
1− u2/c2

.
= K0,

dp

dτ
=
dp/dt

dτ/dt
=

F√
1− u2/c2

.
= K =

 K1

K2

K3

 .

Covariant form of equation of motion:
dpµ

dτ
= Kµ.

The force 4-vector Kµ goes by the name of Minkowski force.

Whereas all Minkowski forces are 4-vectors, in some cases that 4-vector is
the result of a tensor contraction.

Tensor contractions include the inner product of two tensors (involving the
summation over one common index.) If the two tensors are of rank n and
m, respectively, the contraction produces a tensor of rank n+m− 2.

The invariant scalar aµaµ associated with a 4-vector aµ is the contraction of
the (rank-2) tensor aµaν constructed as a tensor product of two 4-vectors.
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Lorentz force and electromagnetic field tensor:

Expressing the equation of motion for a particle with charge q subject to
the Lorentz force in covariant form naturally leads to a representation of the
electric field E and and the magnetic field B in the form of a rank-2 tensor.

Lorentz force: F = qE + qu×B (3-vector).

Construction of the Lorentz-force 4-vector:

K0 =
qE · u/c√
1− u2/c2

= qη · E
c
, K =

q(E + u×B)√
1− u2/c2

= qη0
E

c
+ qη ×B.

– One ingredient is the velocity 4-vector introduced earlier:

ηµ =
1√

1− u2/c2


c
ux
uy
uz

 .

– The magnetic force qu × B is perpendicular to u. Therefore, it does
not contribute to K0.

– Lorentz force 4-vector as tensor contraction: Kµ = qηνF
µν .

– Electromagnetic field tensor: F µν .
=


0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0

.

– Temporal component:

K0 = q
(
η0F

00 + ηjF
0j
)

= qηj
Ej

c
= qη · E

c
.

– Spatial components:2

Ki = q
(
η0F

i0 + ηjF
ij
)

= qη0
Ei
c

+ qεijkη
jBk = qη0

E

c
+ qη ×B.

Covariant form of the equation of motion:
dpµ

dτ
= qηνF

µν .

This relation features two invariant scalars (q and τ), two 4-vectors (pµ and
ην), and one rank-2 tensor (F µν). It involves one contraction of the rank-3
tensor qησF

µν .

2The Levi-Civita tensor εijk vanishes unless all indices have different values. We have
εijk = +1 if their order is cyclic (123, 231, 312) and εijk = −1 if it is anticyclic.
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Lorentz transformation of electromagnetic field tensor:

[lam27]

The principle of relativity enforced for various situations of charge and cur-
rent configurations produces the following evidence.

[lex95]Field components in frame F ′ moving with velocity vî relative to frame F :

E ′x = Ex, E ′y = γ(Ey − vBz), E ′z = γ(Ez + vBy),

B′x = Bx, B′y = γ(By + vEz/c
2), B′z = γ(Bz − vEy/c2).

The inverse transformation interchanges primed and unprimed field compo-
nents and replaces v by −v.

Transformation relation for the electromagnetic field tensor:3

F ′µν = Λµ
ρΛ

ν
σF

ρσ.

The (linear) Lorentz transformation mixes electric and magnetic fields as it
mixes space and time coordinates and as it mixes momentum components
with energy.

Dual electromagnetic field tensor:

Gµν .
=


0 Bx By Bz

−Bx 0 −Ez/c Ey/c
−By Ez/c 0 −Ex/c
−Bz −Ey/c Ex/c 0

 .

Duality relation between field tensors: Gµν =
1

2
εµναβFαβ.

Completely antisymmetric tensor εµναβ is zero if not all indices are different
and +1 (−1) for even (odd) permutations of 0123.

Both field tensors feature in a covariant formulation of Maxwell’s equations.

Duality here refers to a symmetry of electromagnetism. The duality trans-
formation F µν → Gµν is a symmetry transformation, which leaves Maxwell’s
equations invariant.

Maxwell’s equations also contain sources, namely the charge density ρ and the
current density J. The sources are also in need of a covariant representation
(to be discussed below.)

3Given that the fields are functions of space and time, the transformation, x′µ = Λµλx
λ,

of the coordinate 4-vector is implied.
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Partial derivatives Lorentz transformed:

The fundamental laws of classical electrodynamics – Maxwell’s equations for
the fields and sources and the continuity equation for the sources – involve
partial derivatives with respect to time and space coordinates.4

– Gauss’s law for the electric field: ∇ · E =
ρ

ε0
,

– Gauss’s law for the magnetic field: ∇ ·B = 0,

– Faraday’s law: ∇× E = −∂B

∂t
,

– Ampère’s law: ∇×B = µ0ε0
∂E

∂t
+ µ0J,

– Continuity equation: ∇ · J = −∂ρ
∂t

.

One direct demonstration of the Lorentz invariance of these laws requires
relations between partial derivatives with respect to coordinates of frames in
relative motion.

Lorentz transformed differentials of spacetime coordinates:

dx′ = γ(dx− vdt), dy′ = dy, dz′ = dz, dt′ = γ
(
dt− v

c2
dx
)

⇒ dx = γ(dx′ + vdt′), dy = dy′, dz = dz′, dt = γ
(
dt′ +

v

c2
dx′
)
.

Partial derivatives transformed by use of chain rule:

∂

∂x′
=

(
∂x

∂x′

)
∂

∂x
+

(
∂t

∂x′

)
∂

∂t
= γ

(
∂

∂x
+
v

c2
∂

∂t

)
,

∂

∂y′
=

(
∂y

∂y′

)
∂

∂y
=

∂

∂y
,

∂

∂z′
=

(
∂z

∂z′

)
∂

∂z
=

∂

∂z
,

∂

∂t′
=

(
∂t

∂t′

)
∂

∂t
+

(
∂x

∂t′

)
∂

∂x
= γ

(
∂

∂t
+ v

∂

∂x

)
.

4We have shown earlier [lln15] that Maxwell’s equations are only self-consistent if the
sources satisfy the continuity equation.

9



Current 4-vector and continuity equation:

Evidence for the transformation properties of the charge density ρ and the
current density J if frame F ′ moves with velocity vî relative to frame F :

[lam27] ρ′ = γ

(
ρ− β

c
Jx

)
, J ′x = γ(Jx − βcρ), J ′y = Jy, J ′z = Jz.

– Charge density is enhanced on account of length contraction.

– Current density is enhanced on account of time dilation.

– The charge density in a current-carrying conductor is modified because
length contraction differs for positive and negative charge carriers.

– A moving charged object contributes to the current density an amount
proportional to its velocity and enhanced by time dilation.

Current 4-vector: Jµ =


cρ
Jx
Jy
Jz

 , J ′µ = Λµ
νJ

ν .

Continuity equation in covariant form,

∂µJ
µ .

=
∂Jµ

∂xµ
= 0 ⇒ ∂cρ

∂(ct)
+
∂Jx
∂x

+
∂Jy
∂y

+
∂Jz
∂z

= 0 ⇒ ∇ · J = −∂ρ
∂t
.

Its construction from two 4-vectors, Jµ and xµ, guarantees its Lorentz in-
variance.

Lorentz invariance of continuity equation demonstrated differently:

∂ρ′

∂t′
+∇′J′ = γ

(
∂

∂t
+ βc

∂

∂x

)(
ρ− β

c
Jx

)
+ γ

(
∂

∂x
+
β

c

∂

∂t

)
γ(Jx − βcρ) +

∂Jy
∂y

+
∂Jz
∂z

=
∂ρ

∂t

(
γ2 − β2γ2

)︸ ︷︷ ︸
1

+
∂Jx
∂x

(
−β2γ2 + γ2

)︸ ︷︷ ︸
1

+
∂Jy
∂y

+
∂Jz
∂z

=
∂ρ

∂t
+∇J = 0.
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Maxwell’s equations in covariant form:

We have introduced the (rank-2) electromagnetic field tensor F µν and its
dual tensor Gµν earlier when we established the Lorentz force as a 4-vector.

Maxwell’s equations in covariant form are two relations involving both tensors
representing the fields and the current 4-vector representing the sources:

∂νF
µν .

=
∂F µν

∂xν
= µ0J

µ, ∂νG
µν .

=
∂Gµν

∂xν
= 0.

The first equation, which involves sources, is a representation of Gauss’s law
for the electric field (µ = 0) and Ampère’s law (µ = 1, 2, 3).

– Gauss’s law for electric field:

∂F 0ν

∂xν
= µ0J

0 ⇒ 1

c

∂Ex
∂x

+
1

c

∂Ey
∂y

+
1

c

∂Ez
∂z

= µ0cρ ⇒ ∇ · E =
ρ

ε0
.

– Ampère’s law:
∂F µν

∂xν
= µ0J

µ, µ = 1, 2, 3 ⇒ ∇×B = µ0ε0
∂E

∂t
+µ0J.

µ = 1 : − 1

c2
∂Ex
∂t

+
∂Bz

∂y
−∂By

∂z
= µ0Jx ⇒

∂Bz

∂y
−∂By

∂z
= µ0ε0

∂Ex
∂t

+µ0Jx

µ = 2 : − 1

c2
∂Ey
∂t
−∂Bz

∂x
+
∂Bx

∂z
= µ0Jy ⇒

∂Bx

∂z
−∂Bz

∂x
= µ0ε0

∂Ey
∂t

+µ0Jy

µ = 3 : − 1

c2
∂Ez
∂t
−∂Bx

∂y
+
∂By

∂x
= µ0Jy ⇒

∂By

∂x
−∂Bx

∂y
= µ0ε0

∂Ez
∂t

+µ0Jz

The second equation, which does not involve sources, is a representation of
Gauss’s law for the magnetic field (µ = 0) and Faraday’s law (µ = 1, 2, 3).

– Gauss’s law for magnetic field:

∂G0ν

∂xν
= 0 ⇒ ∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z
= 0 ⇒ ∇ ·B = 0.

– Faraday’s law:
∂Gµν

∂xν
= 0, µ = 1, 2, 3 ⇒ ∇× E = −∂B

∂t
.

µ = 1 : − 1

c

∂Bx

∂t
− 1

c

∂Ez
∂y

+
1

c

∂Ey
∂z

= 0 ⇒ ∂Ez
∂y
− ∂Ey

∂z
= −∂Bx

∂t

µ = 2 : − 1

c

∂By

∂t
+

1

c

∂Ez
∂x
− 1

c

∂Ex
∂z

= 0 ⇒ ∂Ex
∂z
− ∂Ez

∂x
= −∂By

∂t

µ = 3 : − 1

c

∂Bz

∂t
− 1

c

∂Ey
∂x

+
1

c

∂Ex
∂y

= 0 ⇒ ∂Ey
∂x
− ∂Ex

∂y
= −∂Bz

∂t
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Lorentz invariance of Maxwell’s equations:

The covariant formulation of Maxwell’s equations presented in the previous
section guarantees their Lorentz invariance due to their construction from
rank-1 and rank-2 tensors.

Alternatively, we can demonstrate the Lorentz invariance of each Maxwell
equation separately in the way we accomplished the task earlier for the con-
tinuity equation satisfied by the sources ρ and J.

∇′ ·B′ = ∂B′x
∂x′

+
∂B′y
∂y′

+
∂B′z
∂z′

= γ

(
∂

∂x
+
β

c

∂

∂t

)
Bx +

∂

∂y
γ

(
By +

β

c
Ez

)
+

∂

∂z
γ

(
Bz −

β

c
Ey

)
= γ

(
∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z

)
︸ ︷︷ ︸

∇·B=0

+γ
β

c

(
∂Bx

∂t
+
∂Ez
∂y
− ∂Ey

∂z

)
︸ ︷︷ ︸

( ∂B∂t +∇×E)
x
=0

= 0.

∇′ · E′ = ∂E ′x
∂x′

+
∂E ′y
∂y′

+
∂E ′z
∂z′

= γ

(
∂

∂x
+
β

c

∂

∂t

)
Ex +

∂

∂y
γ (Ey − βcBz) +

∂

∂z
γ (Ez + βcBy)

= γ

(
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

)
︸ ︷︷ ︸

∇·E

+γβc

[
1

c2
∂Ex
∂t
−
(
∂Bz

∂y
− ∂By

∂z

)]
︸ ︷︷ ︸

( 1
c2

∂E
∂t
−∇×B)

x

= γ
[
∇ · E− βcµ0Jx

]
=
γ

ε0

[
ρ− β

c
Jx

]
=
ρ′

ε0
.

(
∂B′

∂t′
+∇′ × E′

)
x

=
∂B′x
∂t′

+
∂E ′z
∂y′
−
∂E ′y
∂z′

= γ

(
∂

∂t
+ βc

∂

∂x

)
Bx +

∂

∂y
γ(Ez + βcBy)−

∂

∂z
γ(Ey − βcBz)

= γβc

(
∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z

)
︸ ︷︷ ︸

∇·B=0

+γ

(
∂Bx

∂t
+
∂Ez
∂y
− ∂Ey

∂z

)
︸ ︷︷ ︸

( ∂B∂t +∇×E)
x
=0

= 0.

The invariance of Faraday’s law for the other two Cartesian components and
of Ampère’s law are demonstrated similarly. [lex194]
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4-vector potential:

Definition: Aν =


Φ/c
Ax
Ay
Az

.

Relation between potentials and fields in covariant form:

F µν =
∂Aν

∂xµ
− ∂Aµ

∂xν
= ∂µAν − ∂νAµ. (1)

B F 01 =
Ex
c

= −1

c

∂Ax
∂t
− 1

c

∂Φ

∂x
, F 02 =

Ey
c

= −1

c

∂Ay
∂t
− 1

c

∂Φ

∂y
,

F 03 =
Ez
c

= −1

c

∂Az
∂t
− 1

c

∂Φ

∂z
⇒ E = −∇Φ− ∂A

∂t
.

B F 12 = Bz =
∂Ay
∂x
− ∂Ax

∂y
, F 13 = −By =

∂Az
∂x
− ∂Ax

∂z
,

F 23 = Bx =
∂Az
∂y
− ∂Ay

∂z
⇒ B = ∇×A.

B The remaining off-diagonal elements duplicate these results.

B The diagonal elements are identically zero.

Implications for the structure of Maxwell’s equations in covariant form as
established earlier:

∂F µν

∂xν
= µ0J

µ,
∂Gµν

∂xν
= 0.

B The dependence (1) of F µν on Aν guarantees that tensor Gµν as inferred
from the duality relation satisfies the second (homogeneous) relation.

B The first (inhomogeneous) relation can be transformed as follows:

∂F µν

∂xν
=

∂

∂xν

[
∂Aν

∂xµ
− ∂Aµ

∂xν

]
=

∂

∂xµ

[
∂Aν

∂xν

]
− ∂

∂xν

[
∂Aµ

∂xν

]
= µ0J

µ.

B The Lorenz gauge condition implies[lln16]

∇ ·A = − 1

c2
∂Φ

∂t
⇒ ∂Aν

∂xν
= 0.

B The first relation becomes an inhomogeneous wave equation:

∂2Aµ

∂xν∂xν
=

[
∇2 − 1

c2
∂2

∂t2

]
︸ ︷︷ ︸
D′Alembertian �

Aµ = −µ0J
µ
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Electromagnetic wave observed in moving frames:

Linearly polarized plane wave traveling in the positive x-direction.

Views from frame F and from frame F ′ traveling with velocity v = v î relative
to frame F :

E(x, t) = E0 cos(kx− ωt) ĵ, B(x, t) =
E0

c
cos(kx− ωt) k̂;

E′(x′, t′) = E ′0 cos(k′x′ − ω′t′) ĵ, B′(x′, t′) =
E ′0
c

cos(k′x′ − ω′t′) k̂.

Transformation of 4-vector (ω/c,k): (here with kx = k, ky = kz = 0)

kx− ωt = kγ(x′ + vt′)− ωγ(t′ + vx′/c2) = k′x′ − ω′t′.

Collect coefficients of x′ and t′:

⇒ k′ = γ(k − vω/c2), ω′ = γ(ω − vk).

Doppler effect for electromagnetic wave: use ω′ = ck′ in the first equation or
ω = ck in the second equation:

ω′ = γ(1− v/c)ω =

√
1− v/c
1 + v/c

ω.

For v > 0 (v < 0) we observe a red shift (blue shift) in frame F ′.

The transformation of the field tensor produces amplitude changes as well:

E ′0 = γ(E0 − vB0) = γ(1− v/c)E0 =

√
1− v/c
1 + v/c

E0,

B′0 = γ(B0 − (vE0/c
2) = γ(1− v/c)B0 =

√
1− v/c
1 + v/c

B0.

A red shift (blue shift) is associated with a decreasing (increasing) amplitude
in both the electric and magnetic fields.
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Energy-momentum flux tensor:

Earlier we have introduced the momentum 4-vector pµ of a massive particle
and the equation of motion for a charged particle in an electromagnetic field:

dpµ

dτ
= qηνF

µν .

Here we generalize this equation to a continuum of charged matter positioned
and in moving in an electromagnetic field:

∂Pµ

∂τ
= JνF

µν .

– Momentum density 4-vector: Pµ.

– Current 4-vector (from earlier): Jµ.

– Electromagnetic field tensor: F µν .

– Flux of energy and momentum carried by charged matter: JνF
µν .

Continuity equation expressing charge conservation:

∂Jµ

∂xµ
= 0.

Continuity equation expressing the conservation of field energy in the absence
of sources (charges and currents):

∂T µν

∂xν
= 0.

In this relation we postulate a tensor T µν expressing the flux of energy and
momentum pertaining to the electromagnetic field.

The generalization of this continuity equation in the presence of charged
matter adds a term which expresses the transfer of energy and momentum
between field and matter:

∂T µν

∂xν
+ JνF

µν = 0.

The energy-momentum flux tensor of the electromagnetic field, also named
stress-energy-momentum tensor is constructed as follows:

T µν =
1

µ0

[
F µρF ν

ρ −
1

4
gµνF ρσFρσ

]
,

where gµν is the metric tensor introduced earlier.
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– Temporal component (µ = 0): Poynting theorem

⇒ 1

c
J · E = −1

c

∂T 00

∂t
− ∂T 0i

∂xi
.

B J · E: rate at which electric field does work on charged matter,

B T 00 = u =
1

2µ0

[
E2

c2
+B2

]
: field energy density,

B cT 0i = S =
1

µ0

E×B: Poynting vector.

– Spatial components (µ = i = 1, 2, 3):

⇒ ρEi + εijkJ
jBk = −1

c

∂T i0

∂t
− ∂T ij

∂xj
.

B ρEi + εijkJ
jBk: force per unit volume acting on charged matter,

B
T i0

c
= Π =

S

c2
: momentum density of electromagnetic field,

B T ij: momentum flux.

Summary list of Lorentz transformations:

– spacetime coordinates:

t′ = γ(t− vx‖/c2), x′‖ = γ(x‖ − vt), x′⊥ = x⊥.

– velocity:

u′‖ =
u‖ − v

1− vu‖/c2
, u′⊥ =

u⊥
γ(1− vu‖/c2)

.

– energy and momentum:

E ′ = γ(E − vp‖), p′‖ = γ(p‖ − vE/c2), p′⊥ = p⊥.

– electric and magnetic fields:

E ′‖ = E‖, E′⊥ = γ(E⊥ + v ×B⊥),

B′‖ = B‖, B′⊥ = γ(B⊥ − v × E⊥/c
2).

The inverse transformation interchanges primed and unprimed field compo-
nents and replaces v,v by −v,−v, respectively. [lex96][lex146]

[lex147]
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