
Magnetism II [lln23]

The magnetism of transition metals comes from 3d electrons and that of
rare earth elements originates in 4f electrons. The latter are more effectively
shielded from environmental effects than the former.

Crystal field:

The crystalline environment has a reduced rotational symmetry at the atomic
positions. This symmetry depends on the crystal structure.

The five 3d orbitals have distinct shapes with reduced rotational symmetry.

The two orbitals in the group named eg on the left have more negative charge
in the directions of the coordinate axes (x, y, or z) than the three orbitals in
the group named t2g on the right.
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Two common crystalline environments of magnetic ions are octahedral (left)
or tetrahedral (right).
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It is evident then that the eg orbitals have more strongly overlapping wave
functions in the octahedral environment than the t2g orbital and vice versa
in the tetragonal environment. Overlap causes repulsion.

The result is a crystal field splitting of the 3d energy levels into a group of
three and a group of two. The splitting is opposite in the two environments.
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Low-field and high-field regimes:

The order in which the levels of the crystal-field split 3d shell are filled by
electrons depends on the relative strength of two competing forces:

– crystal field effect (cause of level splitting described above),

– pairing force (Coulomb repulsion of electrons in the same orbital), con-
sistent with Hund’s rule #1.

In a weak-field environment the pairing force dominates, whereas the crystal
field is dominant in a strong-field environment.

Example: The Fe++ ion has the electron configuration [Ar]3d6 [lln10].

The crystal field is taken to have octahedral symmetry, which places the t2g
triplet below the eg doublet as shown below.

B Weak-field environment: single occupancy from the bottom up has
priority; the four unpaired electrons produce an effective spin S = 2.

B Strong-field environment: full low-energy level occupancy has priority;
the six paired electrons produce an effective spin S = 0.

Weak-field (strong-field) environments are often associated with high-spin
(low-spin) configurations.
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Orbital quenching:

The crystal-field splitting of 3d electrons invalidates Hund’s rule #3 [lln22].
The orbital angular momentum is effectively quenched: 〈L〉 = 0. The mag-
netic moment is dominated by the resultant spin 〈S〉.

It is instructive to compare specifications and Hund’s-rule predictions with
experimental data for magnetic moments of 3d electrons and 4f electrons.

B S, L, and J as predicted by Hund’s rules.

B p = p1 = µ/µB = gJ
√
J(J + 1) inferred from Hund’s rules #1 - #3.

B p2 = µ/µB = 2
√
S(S + 1) inferred from Hund’s rule #1.
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Quenching is largely absent in the case of 4f electrons, which are well shielded
from crystal-field effects. Quenching for 3d electrons increases the predictive
power of Hund’s rule #1.

The quenching is neither complete nor absent in transition elements with
incomplete 4d and 5d shells (not shown).
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Jahn-Teller effect:

The atomic level spectrum does not passively adjust to the crystal-field en-
vironment. In some cases, the electrons “strike back” quite noticeably.

The Jahn-Teller effect in its simplest realization describes a spontaneous
lattice distortion combined with a splitting of degenerate levels at and near
the bottom of the spectrum.

Example: The Mn3+ ion has the electron configuration [Ar]3d4 [lln10].

In a weak-field octahedral crystal field environment, the four 3d electrons
prefer single occupancy from the bottom up as shown on the left.

A tetragonal distortion of the octahedral crystal-field environment is uniaxial.
Here it elongates the distances in z-direction and compresses them in the x
and y direction.

Quite generally, a lowering of the environmental symmetry causes a splitting
of some if not all degenerate atomic levels. The effect in this example is
shown going from left to right.
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The lattice distortion can be quantified by some parameter Q, which grows
continuously from zero at the point of higher (octahedral) symmetry.

The lattice distortion costs elastic energy that grows quadratically in Q. The
level splittings, on the other hand, tend to grow linearly in Q.

In the example shown, the net energy of the four occupied levels descends
linearly in Q, e.g. −aQ, as the elastic energy grows like +bQ2. The lowest-
energy state is realized for Q0 = a/2b, with lower (tetragonal) symmetry.

This is an instance of interaction-mediated symmetry breaking. All forces
in action are consistent with the higher (octahedral) symmetry. Yet they
spontaneously produce a state of lower (tetragonal) symmetry.

Notice the absence of a clear-cut cause-and-effect relation, which is typical
for interactions.
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Nuclear magnetic resonance:

The experimental probe named Nuclear Magnetic Resonance (NMR) has its
most well-known application in Magnetic Resonance Imaging (MRI).

NMR probes the magnetic environment at positions of atomic nuclei with
non-vanishing nuclear spin I, e.g. 1H (I = 1

2
), 2H (I = 1), or 13C (I = 1

2
).

Nuclear spins tend to be well shielded from strong interactions with other
degrees of freedom. A strong external magnetic field B0 is then easily the
dominant interaction:

H0 = −µ ·B0, µ = gIµNI.

It is safe to assume that the nuclear spin I in question stays in the ground
state and that the relevant energy level spectrum is

E = −gIµNB0mI , mI = −I,−I + 1, . . . ,+I.

Adjacent levels, i.e. levels with ∆mI = ±1, resonate with electromagnetic
radiation at frequency ω, where ~ω = ∆E = gIµNB0. Photons have spin
s = 1, which is consistent with the selection rule ∆mI = ±1.

NMR spectrometers which use magnetic fields around 10T or higher produce
resonance frequencies in the radio frequency (RF) range, amounting to tens
or hundreds of MHz.

For the discussion that follows we focus on a two-level system, i.e. on a phys-
ical ensemble of nuclear spins I = 1

2
. At thermal equilibrium the populations

N+ and N− of the upper and lower levels, respectively, have the ratio,(
N+

N−

)
eq

= e−β~ω.

This ratio can be driven toward unity by radiation at the resonant frequency,
which induces processes of absorption and stimulated emission. We can write,

d

dt
N+(t) = W [N−(t)−N+(t)],

d

dt
N−(t) = W [N+(t)−N−(t)].

The transition rate W is proportional to the intensity of the radiation.

In the absence of spontaneous emission or emission stimulated by interactions
with other degrees of freedom, the difference in level populations approaches
zero exponentially at a rate dictated by the intensity of the radiation:

n(t)
.
= N−(t)−N+(t) ⇒ d

dt
n(t) = −2Wn(t)

⇒ n(t) = neqe
−2Wt, neq = N

(eq)
−
[
1− e−β~ω

]
.
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Counteracting this process of population equalization are processes caused by
interactions with electronic degrees of freedom, which depopulate the upper
level relative to the lower level.

These interactions are, for the most part, environmental effects associated
with the location of the atomic nucleus in a crystal lattice. Their effect is
summarily accounted for in what is named spin-lattice relaxation time T1.

Spin-lattice relaxation processes restore the equalized level populations to
their equilibrium values on the time scale of T1 once irradiation has ceased:

n(t) = neq

[
1− e−t/T1

]
.

If irradiation is initiated in the face of spin-lattice relaxation processes, then
the level equalization remains incomplete. In the (linear) ODE,

d

dt
n(t) = −2Wn(t) +

neq − n(t)

T1
,

the first term on the right-hand side is due to irradiation and the second
term due to spin-lattice relaxation. The exact solution for two different
initial condition [lex171],

n(t) =
neq

1 + 2T1W

[
1− e−(t/T1)(1+2T1W )

]
: n(0) = 0,

n(t) =
neq

1 + 2T1W

[
1 + 2T1We−(t/T1)(1+2T1W )

]
: n(0) = neq,

depends on two characteristic times, 1/W and T1, the former associated with
the depopulation of the lower level and the latter with its repopulation.
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The stationary lower-level excess population is increasingly suppressed from
the equilibrium value as the radiation intensity increases (∝ W ):

lim
t→∞

n(t) =
neq

1 + 2T1W
.
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The rate at which energy is absorbed by the nuclear spin during irradiation
and spin-lattice relaxation is [lex171]:

dE

dt

∣∣∣
abs

= ~ωWn(t)
t→∞−→ ~ωneq

W

1 + 2T1W
.

At low radiation intensity, this rate grows like neq~ωW . Here it is governed
by the time scale 1/W . At higher intensity it saturates at neq~ω/2T1, where
it is governed by the time scale T1.

Bloch equations:

In the following we treat nuclear magnetism as a physical ensemble of classical
magnetic moments interacting primarily with an external magnetic field B.
The equation of motion for the net magnetization reads,

d

dt
M = γM×B.

A solution for a constant and uniform field B = Bz k̂ describes a vector M
of constant length precessing uniformly about the z-axis:

dMx

dt
= γMyBz,

dMy

dt
= −γMxBz,

dMz

dt
= 0,

⇒ Mz = const, Mx = M⊥ sin(ωt), My = M⊥ cos(ωt), ω = γBz.

The constant nonzero Mz can be interpreted as representing the stationary
result neq > 0 of the two-level system considered earlier, where stationarity
is reached on the time scale of T1 (spin-lattice relaxation time).

The rotating M⊥ = Mx î + My ĵ is known experimentally to relax to zero
on a faster time scale T2 (spin-spin relaxation time), caused by a process
of dephasing. Different spins experience (owing to diverse causes) slightly
different magnetic fields Bz, which modifies the precession frequencies ω.

The equations of motion amended to account for both spin-lattice and spin-
spin relaxation are named Bloch equations [lex174][lex175]:

dMx

dt
= γ[MyBz −MzBy]−

Mx

T2
,

dMy

dt
= γ[MzBx −MxBz]−

My

T2
,

dMz

dt
= γ[MxBy −MyBx] +

Meq −Mz

T1
.

A nonzero M⊥, which then rotates and dephases, can be produced from the
equilibrium state with Mz > 0, Mx = My = 0 by ashort pulse of magnetic
field By, for example, causing a 90◦ rotation of Mz toward the xy-plane.
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Electron spin resonance:

Electron Spin Resonance (ESR), also named Electron Paramagnetic Reso-
nance (EPR) is analogous to NMR in many respects.

The electron magnetic moment is much larger than nuclear magnetic mo-
ments, implying that the resonance frequencies are typically much higher.
Experiments use microwave cavities and tune external magnetic fields.

Microwave frequencies (GHz) are ideally suited for the investigation of crystal-
field effects on atomic spectra. A complication in the analysis of ESR data
is the hyperfine splitting of degenerate levels.

One notable example is the magnetic-field splitting of the Kramers doublet
in the cerium ion Ce3+, whose electronic structure is [Xe]4f.

The lone 4f electron has L = 3 and S = 1
2
. Spin-orbit coupling and Hund’s

rule predict a ground state with J = 5
2
, which hase sixfold degeneracy.

The axial crystal field splits this multiplet into three doublets. The lowest
doublet with mJ = ±1

2
is a Kramers doublet.

Such ground-state degeneracies for ions with an odd number of electrons were
predicted by Kramers on general grounds using time reversal symmetry.

A magnetic-field splitting of this Kramers doublet up to ∼ 0.1meV is man-
ageable with typical lab equipment. This puts into the ESR detection range.
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Mössbauer spectroscopy:

Photons emitted from or absorbed by an atom produce recoil motion. In
[lex94] we investigated this effect using energy and momentum conservation.
The effect holds for photons associated with electronic or nuclear transitions.

Transitions with long radiative lifetimes have small linewidth [lln24]. A (ra-
dioactive) source of 57Co nuclei emits, in the wake of its β-decay into 57Fe,
14.4keV photons in a slow transition to the ground state.

In the case of free atoms the resonance conditions for emission and absorption
are significantly different for this transition. Emission photons have not
nearly enough energy to become absorption photons.

However, if the source (57Co nuclei) and the target (57Fe in the ground state)
are bound into the lattice of a solid material, both emission and absorption
are essentially without recoil. The momentum is carried by the entire crystal.

The (extremely sharp) emission and absorption lines of the same transition
are then very close together. The highly precarious resonance condition can
be tuned via motion of the source relative to the target (Doppler effect).

Mössbauer spectroscopy is famous for its high sensitivity. The smallest en-
vironmental effects on the energy levels of the target nucleus are detectible
or the smallest changes in relative velocity between source and target.

Muon-spin rotation:

The protagonist of the muon-spin rotation (µSR) probe is the positively
charged lepton µ+ as produced in the lab from pion decay: π+ → µ+ + νµ.

The neutrino is left-handed, meaning that its spin is antiparallel to its mo-
mentum. If the (spinless) π+ decays while at rest, the µ+ has its spin also
directed opposite to its momentum.

A beam of µ+ particles thus produced is slowed close to rest by charge inter-
action processes, which have no effect on the µ+ spin polarization. The µ+

is attracted to electrons and may form hydrogen-like muonium.

The spin of the implanted µ+ is highly sensitive to local magnetic fields. It
undergoeas Larmor precession at angular frequency ω = γµB.

In a µSR experiment, what is detected is not the µ+ but the positron emerg-
ing from its decay: µ+ → e+ + νe + ν̄µ. This parity violating process emits
e+ particles with an enhanced probability in the direction of the muon spin.
The positron beams thus rotates in sync with the precessing muon spin.
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Exchange interaction:

As a backdrop to what follows, we recall from [lln12] and [lln13] the mag-
netic dipole interaction between magnetic moments µ1 and µ2 such as those
associated with magnetic atoms a distance r apart:

U =
µ0

4πr3
[
µ1 · µ2 − 3(µ1 · r̂)(µ2 · r̂)

]
, r̂

.
=

r

r
.

The strength of this interaction, estimated by the Bohr magneton and a
very short interatomic distance, (µ0/4π)µ2

B/(1Å)3 ∼ 10−23J, yields an energy
equal to that of thermal fluctuations at temperatures ∼ 1K.

The magnetic dipole interaction is far too weak to qualify as an agent of
magnetic ordering at room temperature or higher. Finding the right agent
had to await the advent of quantum mechanics.

The exchange interaction, much stronger than the magnetic dipole inter-
action and of shorter range, has its foundation in Coulomb repulsion and
symmetry principles of quantum statistics.

For a simple demonstration, consider two electrons in atomic orbitals a, b.
Electrons have spin 1

2
, hence they are fermions. The two-particle wave func-

tion must be antisymmetric under permutation (exchange of location).

Recalling the explanations given in [lln22] about the spatial and spin parts
of the two-electron wave function, we write

ΨS(r1, r2) =
1√
2

[
φa(r1)φb(r2) + φa(r2)φb(r1)

]
χS,

ΨT(r1, r2) =
1√
2

[
φa(r1)φb(r2)− φa(r2)φb(r1)

]
χT,

where S stands for spin singlet (s = 0) and T for spin triplet (s = 1). ΨS has
a symmetric spatial part and an antisymmetric spin part, while the opposite
is the case for ΨT. Both wave functions are antisymmetric overall.

The interaction Hamiltonian H contains kinetic energy and Coulomb repul-
sion but no significant interaction between electron spins. The energies of
the singlet and triplet states in first-order perturbation theory become,

ES =

∫
dr1dr2Ψ

∗
S(r1, r2)HΨS(r1, r2), ET =

∫
dr1dr2Ψ

∗
T(r1, r2)HΨT(r1, r2).

The level spacing between singlet and triplet states is determined by the
exchange integral [lex176],

ES − ET = 2

∫
dr1dr2φ

∗
a(r1)φ

∗
b(r2)Hφa(r2)φb(r1)

.
= 2J,

governed entirely by the charge distribution of the two electrons.
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The mere fact that ΨS and ΨT have not only different spatial parts but also
different spin parts makes it possible to express the level spacing 2J as an
effective interaction between electron spins.

Applying the operator identity for two spins s,

(S1 + S2)
2 = (S1)

2 + (S2)
2 + 2S1 · S2,

two the case s = 1
2

we obtain,

2

0

}
=

3

4
+

3

4
+ 2S1 · S2 ⇒ S1 · S2 =

{
1
4

(T)

−3
4

(S)
.

If we construct the replacement Hamiltonian in the form,

Hex
.
=

1

4
(ES + 3ET)︸ ︷︷ ︸

const

− (ES − ET)︸ ︷︷ ︸
2J

S1 · S2,

we can recover the same two energy levels by an operator now acting on the
spin part of the two-electron wave function:∫

dr1dr2Ψ
∗
THexΨT = 〈χT|Hex|χT〉 =

1

4
(ES + 3ET)− 1

4
(ES − ET) = ET,∫

dr1dr2Ψ
∗
SHexΨS = 〈χS|Hex|χS〉 =

1

4
(ES + 3ET) +

3

4
(ES − ET) = ES.

Depending on circumstances, the exchange integral can be positive (favoring
spin alignment) or negative (favoring anti-alignment).

– Realizations of J > 0 are common for electrons sharing incomplete
shells of the same atom, in accordance with Hund’s rule #1. The
spatial wave function is antisymmetric, which separates the charges of
the two electrons more effectively. The spin triplet has lower energy.

– Realizations of J < 0 are common for unpaired electrons on neighboring
atoms. The spatial wave function of the spin singlet is symmetric,
which allows more (negative) electronic charge to be located between
the (positive) nuclear charges, thus lowering Coulomb repulsion.
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The exchange integral can be a significant factor in molecular bonding.
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The kinetic energy is also a factor of significance in bonding. Its magnitude
locally is indicated by the curvature of the wave function (2nd derivative).
Tight confinement enhances curvature. Bonding loosens confinement.

The need for wave-function overlap makes the exchange interaction short-
ranged, in contrast to the (much weaker) dipole interaction.

The exchange interaction in magnetic insulators is typically represented by
a model Hamiltonian of the form,

H = −
∑
i,j

JijSi · Sj,

for statistical mechanical analysis. The double sum is over the sites of lattice.
The exchange constant for all pairs i, j except nearest-neighbor sites are often
negligibly small.

Jij > 0, which favors spin alignment, is the cause of ferromagnetic ordering.
Anti-alignment is favored if Jij < 0. On a bipartite lattice, preferred anti-
alignment of nearest-neighbor spins leads to antiferromagnetic ordering.

Mediated exchange interaction:

We know from earlier that paramagnetism is prevalent in ions with partially
filled d or f shells, neither of which is outermost. Direct wave-function overlap
tends to be weak for unpaired d or f electrons in insulating materials, hence
ineffective as agents of direct exchange interaction.

Here we briefly describe three types of mediated exchange interaction.

– Superexchange: Exchange interaction in magnetic insulators can be
mediated by non-magnetic ions, e.g. by non-magnetic O2− ions between
the sites of magnetic Mn2+ ions in the compound MnO, producing
antiferromagnetism in this case.

The strength and the sign of the effective exchange constant J mediated
by the superexchange mechanism varies with bond angle. This provides
a powerful design tool to magneto-chemists.

– Itinerant exchange: In metals the exchange interaction can be mediated
by conduction electrons, a topic to be discussed in a later module.
Itinerant exchange has a longer range,

JRKKY ∝
cos(kFr)

r3
,

where ~kF is the Fermi momentum of the partially filled band of mag-
netically relevant electrons.
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– Double exchange: One form of indirect exchange is mediated by elec-
tron hopping in mixed-valency magnetic materials. In La1−xSrxMnO3

(Sr doped LaMnO3), Lanthanum is present as trivalent La3+ and Stron-
tium as (divalent) Sr2+.

This compound contains two types of magnetic ions: a fraction x of
Mn4+ with three 3d electrons and a fraction 1 − x of Mn3+ with four
3d electrons.

Recall the splitting of the five 3d orbitals into two groups eg and t2g
discussed earlier. Hund’s rule favors alignment of the three or four 3d
electrons.

-*b t{aPFIOP /l\
e.---l_

% v
I

ffi
t

t

a
i

zt-
+++

ffi

3 "l\ 3J* 3 Jt' 3 "[]

The compound LaMnO3 has the (upper) eg group of levels singly occu-
pied at all Mn sites. The material is insulating and antiferromagnetic.
The superexchange coupling between the Mn ions is mediated by oxy-
gen.

Doping removes the 3d electron in the eg group on a fraction x of Mn
sites. Hopping of the eg electron between Mn ions is a mechanism that
lowers the average kinetic energy due to the more relaxed confinement
of that electron.

Hopping takes place without spin-flip (a key fact). It only takes place
between if the electrons in the t2g are aligned on both sites. Intra-ion
exchange coupling (Hund’s rule) makes hopping costly otherwise.

Ferromagnetic alignment of all 3d electrons facilitates hopping, which
is associated with an energetic incentive. Hopping thus mediates a form
of inter-ion exchange coupling. Hence the name double exchange.

Hopping increases the conductivity by orders of magnitude. The doped
compound becomes metallic.

13


