
Magnetism I [lln22]

The description of magnetism in matter calls for tools from quantum mechan-
ics and statistical mechanics. This module explores topics that employ such
tools – topics traditionally covered (or meant to be covered) in solid-state
physics courses.1

Angular momentum of electrons:

Magnetism in matter is dominated by orbital and spin angular momenta of
electrons, which require a quantum mechanical description.

The net angular momentum of atoms originates in incomplete electronic
shells. Many atoms thus carry spin and/or angular momentum.

Conduction electrons, which are free to roam between atoms, leave behind
the orbital angular momentum of incomplete shells and carry along their spin
angular momentum.

Orbital angular momentum operator: L = (Lx, Ly, Lz).

Eigenvalue equations for atomic orbital angular momentum:2

L2|l,m〉 = l(l + 1)|l,m〉 : l = 0, 1, 2, . . .

Lz|l,m〉 = m|l,m〉 : m = −l,−l + 1, . . . , l.

Atomic orbital magnetic moment:3 |µ| =
√
l(l + 1)µB, µz = −mµB.

Eigenvalue equations for atomic spin angular momentum:

S2|l,ms〉 = s(s+ 1)|s,ms〉 : s = 1
2
, 1, 3

2
, . . .

Sz|l,ms〉 = ms|l,ms〉 : ms = −s,−s+ 1, . . . , s.

Atomic spin magnetic moment:4 |µs| =
√
s(s+ 1)gµB, µ

(z)
s = −msgµB.

Zeeman energy-level splitting in a magnetic field B = Bzk̂:

E = E0 +msgµBBz

.

1To a large extent, this module adapts materials from Blundell 2011.
2All angular momenta are in units of ~, which is often suppressed (as here) in the notation.
3All electronic magnetic moments are units of the Bohr magneton µB

.
= e~/2me.

4The g-factor for electrons is g ' 2.
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Two-electron wave function:

Electrons are fermions. The two-electron wave function must be permutation
antisymmetric. It can be expressed as the product of a spatial part ψ and a
spin part χ.

The spatial part can be written as a linear combination of products of one-
electron (spatial) wave functions φa, φb, . . .:

ψ(r1, r2) =
1√
2

[
φa(r1)φb(r2)± φa(r2)φb(r1)

]
.

The plus (minus) sign makes it symmetric (antisymmetric) under permuta-
tion of positions. The function has parity (−1)p with even or odd p.

The spin part is constructed from the basis, | ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉, as linear
combinations with a definite parity:

χ(m1,m2) =

{
| ↑↑〉, 1√

2

[
| ↑↓〉+ | ↓↑〉

]
, | ↓↓〉, 1√

2

[
| ↑↓〉 − | ↓↑〉

]}
.

The first three are symmetric (even p) and constitute a triplet (s = 1),
whereas last is antisymmetric (odd p) and constitutes a singlet (s = 0).

To make the two-electron wave function antisymmetric, its spatial and spin
parts must have opposite parity.

The Pauli exclusion principle is thus enforced. If both electrons were in the
same quantum state, either the spatial part or the spin part of the two-
electron wave function would vanish identically, whichever has odd parity.

When two electrons experience an interaction that energetically favors one
spatial parity over the other (e.g. Coulomb repulsion), this has the effect
that the degeneracy between singlet and triplet is lifted.

When the electron pair is subject to a magnetic field B = Bz k̂, the triplet
splits up energetically, while the singlet is unaffected.
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Atomic electrons in a magnetic field:

Consider an atom with Z electrons positioned in a uniform magnetic field B.

In a semi-classical description each electron is instantaneously at position ri
moving with instantaneous velocity vi.

Vector potential associated with uniform magnetic field [lln12]: A =
1

2
B×r.

Kinetic momentum of electron: pi = mevi.

Canonical momentum of electron (with charge −e): pi + eA(ri).

Total spin angular momentum: ~S =
Z∑
i=1

~si.

Total orbital angular momentum: ~L =
Z∑
i=1

~Li =
Z∑
i=1

ri × pi.

Scalar potential (due to nuclear charge) experienced by electrons: Φi.

Hamiltonian:

H =
Z∑
i=1

[
[pi + eA(ri)]

2

2me

+ Φi

]
+ gµBB · S

=
Z∑
i=1

[
p2i

2me

+ Φi

]
︸ ︷︷ ︸

H0

+µB(L + gS) ·B +
e2

8me

Z∑
i=1

(B× ri)
2

– The first term does not depend on B. It describes the kinetic energy
and potential energy of each electron as it moves in the static electric
field of the nucleus, possibly modified summarily by the other electrons.

– The second term is linear in B. It is the dominant magnetic effect and
describes the phenomenon of paramagnetism. It is absent for atoms
whose total angular momentum vanishes.

– The third term is quadratic in B. It is present for all atoms and becomes
the dominant magnetic effect for atoms that are not paramagnetic. It
describes the phenomenon of diamagnetism.

– Neglected in this Hamiltonian are the interaction effects between elec-
trons. They give rise to couplings between the total orbital and spin
angular momenta (LS-coupling) and couplings between the total an-
gular momenta, Ji = Li + si, of electrons (JJ-coupling).
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Diamagnetism:

The diamagnetic response, like the dielectric response, is universal in atomic
matter. Diamagnetic materials are those that do not exhibit a stronger
magnetic response of any other types.

A classical plausibility argument for diamagnetism invokes Lenz’s rule of neg-
ative feedback – a consequence for the direction of magnetic fields generated
by induced currents as dictated by of Faraday’s law.

A diamagnetic response can be derived for a single charge carrier moving
in a magnetic field [lex121]. However, the effect is wiped out by classical
statistical averaging.

The Bohr-van Leeuwen theorem states that on the basis of classical statistical
mechanics of charge carriers moving in a magnetic field, neither diamagnetism
nor paramagnetism exist. Quantum mechanics is the basis of both.

A quantum theory of diamagnetism starts from the third term of the Hamil-
tonian constructed on the previous page, rewritten here for an ensemble of
N identical electron orbitals in a macroscopic system of volume V :

〈0|Hdia|0〉 =
Ne2

8meV

Z∑
i=1

〈0|(B× ri)
2|0〉.

Diamagnetism is empirically known to be only very weakly T -dependent.
Taking a ground-state expectation value ignores any T -dependence in this
simple first crack at a theory.

Setting B = B k̂, we can write (B× ri)
2 = B2(x2i + y2i ) ' 2

3
B2r2i .

In a diamagnet, the expectation value 〈0|Hdia|0〉 carries the leading magnetic-
field dependence of the Helmholtz free energy F . The diamagnetic response
thus follows from a second derivative as follows:

χ
.
= −µ0

∂2F

∂B2
= −Ne

2µ0

6meV

Z∑
i=1

〈0|r2i |0〉.

Among the first 60 elements, 31 are diamagnetic. A more refined theory of
diamagnetism will be presented in a later module.

In solid materials, diamagnetism can be strongly anisotropic.
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Paramagnetism:

The dominant form of paramagnetism is caused by unpaired atomic electrons.
Magnetic atoms have a total angular momentum, J = L + S, a combination,
in general, of orbital and spin angular momentum.

The paramagnetisms ofN independent atomic magnetic moments is analyzed
in textbook applications of statistical mechanics of canonical ensembles. The
canonical partition function factorizes.

Semi-classical theory [tex84]:5

– The magnetic moment is treated as a three-component vector µ.

– Energy function for each moment: H = −µ ·B.

– Partition function evaluated in spherical coordinates:

ZN = 4π

(
sinh(βµB)

βµB

)N

, β
.
=

1

kBT
.

– Gibbs free energy: G(T,B,N) = −kBT lnZN .

– Magnetization: M
.
= −

(
∂G

∂B

)
T,N

= Nµ

[
coth(βµB)− 1

βµB

]
.

– Langevin function: L(y)
.
= coth(y)− 1

y
=
y

3
+ O(y3).

– Susceptibility: χ
.
= µ0

(
∂M

∂B

)
T,N

= Nµ0µ
2

[
1

βµ2B2
− β

sinh2(βµB)

]
.

Curie’s law: χ =
Nµ0µ

2

3kBT
+ · · · (dominant term at low T ).

– Heat capacity: CH
.
= kBβ

2 ∂
2

∂β2
lnZN = NkB

[
1− β2µ2B2

sinh2(βµB)

]
.

Flaw of semi-classical model: lim
T→0

CH = NkB > 0.

– Universal magnetization curve:

-4 -2 0 2 4
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μB/kBT

M
/N
μ

5These are exercises of a different course (PHY525: Statistical Physics I).
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Two-level system [tex85]:

– Magnetic moment of an electron spin: S = 1
2
, g = 2.

– Two energy levels: E± = ±µBB.

– Partition function: ZN =

[
2 cosh

(
µBB

kBT

)]N
.

– Gibbs free energy: G(T,B,N) = −kBT lnZN .

– Magnetization: M
.
= −

(
∂G

∂B

)
T,N

= NµB tanh

(
µBB

kBT

)
.

– Susceptibility: χ
.
= µ0

(
∂M

∂B

)
T,N

=
Nµ0µ

2
B

kBT
sech2

(
µBB

kBT

)
.

Curie’s law: χ =
Nµ0µ

2
B

kBT
+ · · · (dominant term at low T ).

– Heat capacity: CH
.
= kBβ

2 ∂
2

∂β2
lnZN = NkB

(
µBB

kBT

)2

sech2

(
µBB

kBT

)
.

– Universal magnetization curve and heat capacity:
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– The magnetization curve is similar in structure but not identical, apart
from the different scale.

– The heat capacity of the quantum result is, as expected, consistent
with the third law of thermodynamics.

– The broad peak of CH is known as Schottky anomaly – one of several
contributions to the heat capacity of a solid magnetic material.

Brillouin paramagnetism [tex86]:

– Atomic angular momentum J with z-componentm = −J,−J+1, . . . ,+J .

– Energy levels: Em = mgµBB (2J + 1 in number).

– Solution uses geometric sum.
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– Partition function: ZN =

[
+J∑

m=−J

emx

]N
=

[
sinh

(
(J + 1

2
)x
)

sinh
(
1
2
x
) ]N

, x
.
=
gµB

kBT
.

– Gibbs free energy: G(T,B,N) = −kBT lnZN .

– Magnetization: M
.
= −

(
∂G

∂B

)
T,N

= MsatBJ(y), y = Jx.

Saturation value: Msat = NgµBJ .

– Brillouin function: BJ(y)
.
=

2J + 1

2J
coth

(
2J + 1

2J
y

)
− 1

2J
coth

( y

2J

)
.

Quantum limit: B 1
2
(y) = tanh(y).

Classical limit: B∞(y) = coth(y)− 1

y
.

– One-parameter family of magnetization curves (J = 1
2
, 1, 3

2
, 2, 5

2
,∞):
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Van Vleck paramagnetism:

If the atomic ground state has J = 0, then the dominant form of paramag-
netism is absent. However, excited states with J 6= 0 produce a paramagnetic
response as a second-order perturbation:

χ =
N

V

(
2µ2

B

∑
n

|〈0|Lz + gSz|n〉|2

En − E0

− e2µ0

6me

Z∑
i=1

〈0|r2i |0〉

)
.

The sum
∑

n is over excited atomic states and the sum
∑

i over electronic
orbitals in the ground state.

The van Vleck paramagnetism (first term) is comparable in magnitude to
the diamagnetism (second term), but oppositie in sign. Both are largely
independent of temperature (unlike the dominant form of paramagnetism).

And then there is the Pauli paramagnetism of conduction electrons – a major
topic of a later module (see also PHY525: Statistical Physics I) .
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Fine structure:

The ground state of an atom with incomplete occupation of electronic shells
has either a net orbital angular momentum L or a net spin angular momen-
tum S or both.

In the absence of any interactions, such an electronic ground state has a
degeneracy (2L+ 1)(2S + 1).

In the presence of a spin-orbit coupling, HLS = λL · S, L and S are not
separately conserved. The total angular momentum, J = L + S, remains
conserved.

Also conserved remain the magnitudes, L2 = L(L + 1) and S2 = S(S + 1)
(at least nonrelativistically).

States with given L and S exist for a range of J : |L− S| ≤ J ≤ L+ S. The
spin-orbit coupling reduces the degeneracy to multiplets with fixed J :

J2 = L2 + S2 + 2L · S ⇒ 〈HLS〉 =
λ

2

[
J(J + 1)− L(L+ 1)− S(S + 1)

]
.

Landé interval rule: ∆EJ
.
= E(J)− E(J − 1) = λJ for fixed L and S.

Visualization of degeneracy reduction
due to spin-orbit coupling:

Example with L = 3 and S = 3
2
.

⇒ Jmin = 3
2
, Jmax = 9

2
.

[image from Blundell 2011]
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Predicting the nature of the electronic ground state of an atom requires
knowledge of the values of L, S, and J produced by unpaired electrons.
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Hund’s rules:

Empirical rules (of limited and ranked scope) regarding the values of L, S,
and J of the electronic ground-state configuration in a single incomplete
subshell (specified in the periodic table of [lln10]).

#1 Total spin: S = Smax.

#2 Total orbital angular momentum: L = Lmax.

#3 Total angular momentum: J =

{
|L− S| : shell less than half full,
L+ S : shell more than half full.

Rule #1 is argued on the fact that electrons with the same spin orientation
are forced into different l orbitals, which lowers the Coulomb repulsion.

Rule #2 is argued (more dubiously) on the fact that electrons that maximize
L move in the same direction and can thus avoid each other more easily.

Rule #3, supposed to minimize the spin-orbit coupling energy, is the most
restricted in scope, given that other couplings or sometimes stronger.

Example: rare-earth ion Dy3+ (dysprosium).

– Electronic configuration of atom: [Xe]4f106s2.

– Dy3+ lacks two 6s electrons and one 4f electrons: [Xe]4f9.

– The 4f shell has 9 electrons (14 at full capacity).

– Electrons in an f shell have l = 3.

– The 4f shell accommodates a maximum 2l + 1 = 7 electrons with the
same spin orientation.

– Two electrons are thus spin-paired, which leaves 5 electrons that are
not. Hence S = 5

2
(rule #1), implying 2S + 1 = 6.

– The net orbital angular momentum of the 7 electrons with the same
spin orientation vanishes.

– The maximum orbital angular momentum of the two remaining elec-
trons (with opposite spin orientation) is L = 3 + 2 = 5 (rule #2).

– The 4f shell is more than half full. Hence J = 5 + 5
2

= 15
2

(rule #3).

– Symbolic representation: 6H15/2.

Hund’s rules are applicable to incomplete 3d shells in transition metals (ele-
ments 21 to 30) and to incomplete 4f shells in lanthanides (57 to 71). They
are more accurate for the latter set for reasons discussed later.
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Russell-Saunders coupling:

The coupling between the spin S and the orbital angular momentum L of
an atom is interpreted as the electron spin alignment with the magnetic field
produced by (relative) orbital motion of the nucleus.

– Orbital angular momentum (for a single electron): ~L = mer× v.

– Nuclear charge: q = Ze.

– Electric potential: Φ(r) =
q

4πε0r
.

– Electric field: E = − q

4πε0r2
r

r
= −dΦ

dr

r

r
.

– Magnetic field: B =
µ0

4π

qv × r

r3
=

E× v

c2
= −dΦ

dr

~
merc2

L.

– Electron spin magnetic moment: m =
ge~
2me

S.

– Potential energy:6 HLS = −1

2
m ·B =

e~2g
4m2

ec
2

1

r

dΦ

dr
S · L.

– If Coulomb potential is applicable:
1

r

dΦ

dr
=

Ze

4πε0r3
.

– Atomic physics yields estimates of 〈r−3〉 for estimates of 〈S · L〉.

Landé g-factor:

– Atomic magnetic moment: m = µB(gLL + gSS) = µBgJJ

with gL = 1, gS = 2, and gJ to be determined.

– Use m · J = µBgJJ2 = µB(gLL · J + gSS · J).

– Use L · J =
1

2

(
J2 + L2 − S2

)
S · J =

1

2

(
J2 + S2 − L2

)
.

– Use J2 = J(J + 1), L2 = L(L+ 1), S2 = S(S + 1).

⇒ 2gJJ(J + 1) = gL
[
J(J + 1) + L(L+ 1)− S(S + 1)

]
+ gS

[
J(J + 1)− L(L+ 1) + S(S + 1)

]
.

– Landé g-factor: gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
.

6The relativistic Thomas factor 1
2 looks artificial, but appears naturally in a fully rela-

tivistic calculation.
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Nuclear spins:

Protons and neutrons are fermions with spin I = 1
2
. Their magnetic moments

are much smaller than that of the electron.

Nuclear magneton: µN
.
=

e~
2mp

= 5.0508× 10−27Am2 ' 5.4× 10−4µB.

Nuclear magnetic moment: µ = gIµNI.

The nuclear g-factors gI are hard to predict, even for the neutron and the
proton, due to their complex quark composition.

Some common nuclear spins:
n: neutron
p: proton, 1H
d: deuteron, 2H
t: triton, 3H
N : # of neutrons
Z: atomic number (# of protons)
A = Z +N : mass number
X: element in AX
I: nuclear spin (in units of ~)
µ: nuclear magnetic moment
µN: nuclear magneton
gI : nuclear g-factor

[table from Blundell 2011]

Nucleus Z N I pltry gr

1,,
d:2H

t--3H
12c

l3c

laN

160

17o

leF

3lP

33s

0tl
101,
111
't1I
LL2

660
67+
771

0

5
2
1

2
1

2
3
2

8

8

9

l5

t6

8

9

10

t6

l7

- 1.913

2.793

0.857

-2.128
0

0.702

0.404

0

- 1.893

2.628

r.r32

4.643

-3.826
5.586

0.857

4.255

0

1.404

0.404

0

-0.7 57

5.257

2.263

0.429

Identical nucleons tend to form singlet pairs. Nuclei with an odd number of
protons and/or an odd number of neutrons have a nonzero nuclear spin.

Hyperfine structure:

The orbital angular momentum L and spin S of atomic electrons produce a
magnetic field at the nuclear position and thus interact with nuclear spin I.

Consider a nuclear spin at r = 0 and an electron spin at position r.

Magnetic dipole field of nuclear spin at position of electron spin [lln12][lex36]:

B =
µ0

4πr3

[
3(µI · r̂)r̂− µI

]
.

Interaction potential energy of electron spin: U = −µS ·B.
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Magnetic dipole interaction between electron spin and nuclear spin [lex130]:

Hdip =
µ0

4πr3

[
µS · µI − 3(µS · r̂)(µI · r̂)

]
=
µ0gSgIµBµN

4πr3

[
S · I− 3(S · r̂)(I · r̂)

]
.

This dipolar spin-spin interaction averages to zero for electronic s-orbitals.7

However, the overlap of the s-orbital wave function with nuclear position
produces the Fermi contact interaction:

Hcon =

(
2µ0

3

)
gSgIµBµN S · I.

There also exists a dipolar interaction between the orbital angular momentum
and the nuclear spin. A more complete analysis starts from the Hamiltonian,

H =
1

2me

(p + eA)2 + 2µBS · (∇×A) + Φ(r),

A =
µ0

4πr3
µ× r, µ = gIµNI.

The hyperfine interaction is distilled from this expression in two steps [lex123]:

H′ = µ0gIµBµN

2π

[
(S · ∇)(I · ∇)

1

r
− (S · I)∇21

r
+

L · I
r3

]
,

=
µ0gIµBµN

2π
I ·
[

L− S + 3(S · r̂)r̂

r3
+

8π

3
S δ(r)

]
.

The hyperfine splitting in the ground state of atomic hydrogen with electronic
L = 0, S = 1

2
and nuclear I = 1

2
involves transitions between a singlet

combination and a triplet combination. The singlet state has lower energy.

The transition energy corresponds to the famous 21cm HI emission8 detected
by astronomers. For comparison, the average wavelength of the cosmic mi-
crowave background (CMB) radiation is less than 1cm.

7Positional averaging of the electron relative to the nucleus.
8H stands for hydrogen and I (Roman 1) for neutral (not ionized).
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